- #1
LagrangeEuler
- 717
- 20
What is the basis of 2x2 matrices with real entries? I know that the basis of 2x2 matrices with complex entries are 3 Pauli matrices and unit matrix:
[tex]\begin{bmatrix}
0 & 1 \\[0.3em]
1 & 0 \\[0.3em]
\end{bmatrix}[/tex],
[tex]\begin{bmatrix}
0 & -i \\[0.3em]
i & 0 \\[0.3em]
\end{bmatrix}[/tex]
[tex]\begin{bmatrix}
1 & 0 \\[0.3em]
0 & -1 \\[0.3em]
\end{bmatrix}[/tex]
and
[tex]\begin{bmatrix}
1 & 0 \\[0.3em]
0 & 1 \\[0.3em]
\end{bmatrix}[/tex]
What about in the case of real 2x2 matrices? How many matrices is there in the basis?
[tex]\begin{bmatrix}
0 & 1 \\[0.3em]
1 & 0 \\[0.3em]
\end{bmatrix}[/tex],
[tex]\begin{bmatrix}
0 & -i \\[0.3em]
i & 0 \\[0.3em]
\end{bmatrix}[/tex]
[tex]\begin{bmatrix}
1 & 0 \\[0.3em]
0 & -1 \\[0.3em]
\end{bmatrix}[/tex]
and
[tex]\begin{bmatrix}
1 & 0 \\[0.3em]
0 & 1 \\[0.3em]
\end{bmatrix}[/tex]
What about in the case of real 2x2 matrices? How many matrices is there in the basis?