- #1
Zero2Infinity
- 7
- 0
Homework Statement
Consider two vector spaces ##A=span\{(1,1,0),(0,2,0)\}## and ##B=\{(x,y,z)\in\mathbb{R}^3 s.t. x-y=0\}##. Find a basis of ##A\cap B##.
I get the solution but I also inferred it without all the calculations. Is my reasoning correct
Homework Equations
linear dependence definition.
The Attempt at a Solution
First of all I look for a basis of ##B##, which is ##(1,1,0),(0,0,1)##.
Now, the complete method for finding the basis of ##A\cap B## is the following one. I set
\begin{equation}
a_{1}(1,1,0)+a_{2}(0,2,0)=b_{1}(1,1,0)+b_{2}(0,0,1)
\end{equation}
or, equivalently (the coefficients are unknown so the sign is not that important as I can name ##-b_{i}=b_{i}##),
\begin{equation}
a_{1}(1,1,0)+a_{2}(0,2,0)+b_{1}(1,1,0)+b_{2}(0,0,1)=(0,0,0)
\end{equation}
By solving the linear system I get:
\begin{equation}
\begin{cases} a_{1}+0+b_{1}+0=0\\
a_{1}+2a_{2}+b_{1}+0=0 \\ 0+0+0+b_{2}=0 \end{cases}
\Leftrightarrow \begin{cases} a_{1}=-b_{1}\\
a_{1}+2a_{2}+b_{1}=0 \\ b_{2}=0 \end{cases}
\end{equation}
##a_{1}=-b_{1},a_{2}=b_{2}=0##. Thus, the generic vector ##\textbf{v}\in A\cap B## can be written as the linear combination of the basis of ##A## with ##a_{1}## and ##a_{2}## as coefficents.
\begin{equation}
\textbf{v}=-b_{1}(1,1,0)+0\cdot(0,2,0)=-b_{1}(1,1,0)
\end{equation}
The conclusion is that the searched basis is ##(1,1,0)##.
Now, I know this is the correct procedure but is it correct to say that, since I know a basis of ##A## and a basis of ##B##, the basis of ##A\cap B## are the common vectors to both basis, if there is at least one?
This way I could have immediately said that ##\mathcal{B}_A:(1,1,0),(0,2,0), \mathcal{B}_B:(1,1,0),(0,0,1)\Rightarrow \mathcal{B}_{A\cap B}:(1,1,0)##.