- #1
Master1022
- 611
- 117
- Homework Statement
- A bag has three coins in it which are visually indistinguishable, but when flipped, one coin has a 10% chance of coming up heads, another as a 30% chance of coming up heads, and the last has 60% chance of coming up heads. I randomly draw a coin from the bag and flip it, and the result comes up heads. What is the probability that if I reflip this coin, it will come up heads again? Why?
- Relevant Equations
- Bayes Theorem
Hi,
I was attempting the following question and just wanted to check whether my working was correct:
Question: A bag has three coins in it which are visually indistinguishable, but when flipped, one coin has a 10% chance of coming up heads, another as a 30% chance of coming up heads, and the last has 60% chance of coming up heads. I randomly draw a coin from the bag and flip it, and the result comes up heads. What is the probability that if I reflip this coin, it will come up heads again? Why?
Attempt:
Let us denote the coins A, B, and C with probabilities of getting a head as follows: ##p(H|A) = 0.1##, ##p(H|B) = 0.3##, and ##p(H|C) = 0##. Each coin is equally likely to be chosen: ##p(A) = p(B) = p(C) = \frac{1}{3} ##.
Thus, we can find:
$$ p(A|H) = \frac{p(H|A) p(A)}{p(H|A) p(A) + p(H|B) p(B) + p(H|C) p(C)} = \frac{0.1 \cdot \frac{1}{3}}{0.1 \cdot \frac{1}{3} + 0.3 \cdot \frac{1}{3} + 0.6 \cdot \frac{1}{3}} = 0.1 $$
$$ p(B|H) = \frac{p(H|B) p(B)}{p(H|A) p(A) + p(H|B) p(B) + p(H|C) p(C)} = \frac{0.3 \cdot \frac{1}{3}}{0.1 \cdot \frac{1}{3} + 0.3 \cdot \frac{1}{3} + 0.6 \cdot \frac{1}{3}} = 0.3 $$
$$ p(C|H) = \frac{p(H|C) p(C)}{p(H|A) p(A) + p(H|B) p(B) + p(H|C) p(C)} = \frac{0.6 \cdot \frac{1}{3}}{0.1 \cdot \frac{1}{3} + 0.3 \cdot \frac{1}{3} + 0.6 \cdot \frac{1}{3}} = 0.6 $$
So now we can find posterior probability:
$$ p(H|H) = p(H|A)p(A|H) + p(H|B)p(B|H) + p(H|C)p(C|H) = (0.1)^2 + (0.3)^2 + (0.6)^2 = 0.46 $$
Does this look correct?
I was attempting the following question and just wanted to check whether my working was correct:
Question: A bag has three coins in it which are visually indistinguishable, but when flipped, one coin has a 10% chance of coming up heads, another as a 30% chance of coming up heads, and the last has 60% chance of coming up heads. I randomly draw a coin from the bag and flip it, and the result comes up heads. What is the probability that if I reflip this coin, it will come up heads again? Why?
Attempt:
Let us denote the coins A, B, and C with probabilities of getting a head as follows: ##p(H|A) = 0.1##, ##p(H|B) = 0.3##, and ##p(H|C) = 0##. Each coin is equally likely to be chosen: ##p(A) = p(B) = p(C) = \frac{1}{3} ##.
Thus, we can find:
$$ p(A|H) = \frac{p(H|A) p(A)}{p(H|A) p(A) + p(H|B) p(B) + p(H|C) p(C)} = \frac{0.1 \cdot \frac{1}{3}}{0.1 \cdot \frac{1}{3} + 0.3 \cdot \frac{1}{3} + 0.6 \cdot \frac{1}{3}} = 0.1 $$
$$ p(B|H) = \frac{p(H|B) p(B)}{p(H|A) p(A) + p(H|B) p(B) + p(H|C) p(C)} = \frac{0.3 \cdot \frac{1}{3}}{0.1 \cdot \frac{1}{3} + 0.3 \cdot \frac{1}{3} + 0.6 \cdot \frac{1}{3}} = 0.3 $$
$$ p(C|H) = \frac{p(H|C) p(C)}{p(H|A) p(A) + p(H|B) p(B) + p(H|C) p(C)} = \frac{0.6 \cdot \frac{1}{3}}{0.1 \cdot \frac{1}{3} + 0.3 \cdot \frac{1}{3} + 0.6 \cdot \frac{1}{3}} = 0.6 $$
So now we can find posterior probability:
$$ p(H|H) = p(H|A)p(A|H) + p(H|B)p(B|H) + p(H|C)p(C|H) = (0.1)^2 + (0.3)^2 + (0.6)^2 = 0.46 $$
Does this look correct?