MHB Berk's question via email about an antiderivative

AI Thread Summary
The integral of e^(-2x)cos(3x) can be evaluated using Integration By Parts twice, leading to the expression I = (3/13)e^(-2x)sin(3x) - (2/13)e^(-2x)cos(3x) + C. An alternative method involves solving a differential equation, where the particular solution is derived from the form e^(ax)(Acos(bx) + Bsin(bx)). By equating coefficients, the constants A and B are found, resulting in the same integral solution. The final result confirms that the integral evaluates to (e^(-2x)/13)(3sin(3x) - 2cos(3x)) + C. This demonstrates the consistency of different integration techniques for the same problem.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate $\displaystyle \begin{align*} \int{ \mathrm{e}^{-2\,x}\cos{(3\,x)}\,\mathrm{d}x} \end{align*}$

This requires using Integration By Parts twice...

$\displaystyle \begin{align*} I &= \int{\mathrm{e}^{-2\,x}\cos{ \left( 3\,x \right) } \,\mathrm{d}x} \\ I &= \frac{1}{3}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} - \int{ -\frac{2}{3}\,\mathrm{e}^{-2\,x} \sin{(3\,x)}\,\mathrm{d}x } \\ I &= \frac{1}{3}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} + \frac{2}{3} \int{ \mathrm{e}^{-2\,x} \sin{(3\,x)} \,\mathrm{d}x } \\ I &= \frac{1}{3}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} + \frac{2}{3} \left[ -\frac{1}{3}\,\mathrm{e}^{-2\,x} \cos{(3\,x)} - \int{ \frac{2}{3}\,\mathrm{e}^{-2\,x} \cos{ \left( 3\,x \right) } \,\mathrm{d}x } \right] \\ I &= \frac{1}{3}\,\mathrm{e}^{-2\,x}\sin{ \left( 3\,x \right) } - \frac{2}{9}\,\mathrm{e}^{-2\,x} \cos{(3\,x)} - \frac{4}{9} \int{ \mathrm{e}^{-2\,x} \cos{(3\,x)} \,\mathrm{d}x } \\ I &= \frac{1}{3}\,\mathrm{e}^{-2\,x} \sin{ \left( 3\,x \right) } - \frac{2}{9} \,\mathrm{e}^{-2\,x} \cos{ \left( 3\,x \right) } - \frac{4}{9}\,I \\ \frac{13}{9}\,I &= \frac{3}{9}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} - \frac{2}{9}\,\mathrm{e}^{-2\,x} \cos{ \left( 3\, x\right) } \\ I &= \frac{3}{13}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} - \frac{2}{13}\,\mathrm{e}^{-2\,x} \cos{ \left( 3\,x \right) } \end{align*}$

Thus $\displaystyle \begin{align*} \int{ \mathrm{e}^{-2\,x} \cos{ \left( 3\,x \right) } \,\mathrm{d}x} = \frac{3}{13}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} - \frac{2}{13}\,\mathrm{e}^{-2\,x} \cos{ \left( 3\,x \right) } + C \end{align*}$
 
Mathematics news on Phys.org
Another approach would be to consider:

$$y=\int e^{ax}\cos(bx)\,dx$$

Thus:

$$\d{y}{x}=e^{ax}\cos(bx)$$

The homogeneous solution is:

$$y_h(x)=c_1$$

And the particular solution will take the form:

$$y_p(x)=e^{ax}\left(A\cos(bx)+B\sin(bx)\right)$$

Hence:

$$y_p'(x)=e^{ax}\left((Aa+Bb)\cos(bx)+(Ba-Ab)\sin(bx)\right)$$

Substituting into the ODE, we obtain:

$$e^{ax}\left((Aa+Bb)\cos(bx)+(Ba-Ab)\sin(bx)\right)=e^{ax}\cos(bx)$$

$$(Aa+Bb)\cos(bx)+(Ba-Ab)\sin(bx)=\cos(bx)+0\sin(bx)$$

Equating coefficients, we obtain the system:

$$Aa+Bb=1$$

$$Ba-Ab=0$$

Solving this system, we obtain:

$$(A,B)=\left(\frac{a}{a^2+b^2},\frac{b}{a^2+b^2}\right)$$

And so our particular solution is:

$$y_p(x)=\frac{e^{ax}}{a^2+b^2}\left(a\cos(bx)+b\sin(bx)\right)$$

And then by the principle of superposition, there results:

$$y(x)=y_h(x)+y_p(x)=c_1+\frac{e^{ax}}{a^2+b^2}\left(a\cos(bx)+b\sin(bx)\right)$$

And so we conclude:

$$\int e^{ax}\cos(bx)\,dx=\frac{e^{ax}}{a^2+b^2}\left(a\cos(bx)+b\sin(bx)\right)+C$$

In the given problem, we have:

$$a=-2,\,b=3$$

Plugging those in, we have:

$$\int e^{-2x}\cos(3x)\,dx=\frac{e^{-2x}}{13}\left(3\sin(bx)-2\cos(bx)\right)+C$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top