MHB Bessel Function: a^2-b^2 Integral Relationship

AI Thread Summary
The discussion centers on proving the integral relationship involving Bessel functions, specifically showing that the equation holds for the given parameters. The proof utilizes integration by parts and identities related to Bessel functions to derive the integral expression. Key steps include manipulating the integral of the product of Bessel functions and applying boundary conditions. The final expression confirms the relationship between the integral and the Bessel functions evaluated at specific points. This establishes a significant connection in the study of Bessel functions and their integrals.
Another1
Messages
39
Reaction score
0
show that
$$(a^2-b^2)\int_{0}^{P} J_{v}(ax)J_{v}(bx)x\,dx=P\left\{bJ_{v}(aP)J^{'}_{v}(bP)-aJ^{'}_{v}(ap)J_{v}(bP)\right\}$$
when $$J^{'}_{v}(aP)=\d{J_{v}(ax)}{(ax)},(x=P)$$

I don, have idea
 
Mathematics news on Phys.org
Another said:
show that
$$(a^2-b^2)\int_{0}^{P} J_{v}(ax)J_{v}(bx)x\,dx=P\left\{bJ_{v}(aP)J^{'}_{v}(bP)-aJ^{'}_{v}(ap)J_{v}(bP)\right\}$$
when $$J^{'}_{v}(aP)=\d{J_{v}(ax)}{(ax)},(x=P)$$

(My thinking)
________________________________________________________________________________________
identities

$$\d{}{x}\left\{ x^{-v}J_{v}(ax)\right\}=-ax^{-v}J_{v+1}(ax)$$
$$\d{}{x}\left\{ x^{v+1}J_{v+1}(ax)\right\}=ax^{v+1}J_{v}(ax) $$

$$\d{}{x}\left\{ x^{v}J_{v}(x)\right\}=x^{v}J_{v-1}(x) $$
$$\d{}{x}\left\{ x^{v+1}J_{v+1}(x)\right\}=x^{v+1}J_{v}(x) $$
$$x^{v+1}J_{v+1}(x)=\int \left\{ x^{v+1}J_{v}(x) \right\} dx $$
________________________________________________________________________________________
soluion

$$\int J_{v}(ax)J_{v}(bx)x dx = \int \left[ x^{v+1}J_{v}(ax) \right] \left[ x^{-v}J_{v}(bx) \right]dx $$
$$uv-\int v du = \left[ x^{-v}J_{v}(bx) \right] \left[ \frac{x^{v+1}}{a}J_{v+1}(ax) \right]+\frac{b}{a}\int \left[ x^{-v}J_{v+1}(bx) \right] \left[ x^{v+1}J_{v+1}(ax) \right] dx $$

see (by parts again)
$$\int \left[ x^{-v}J_{v+1}(bx) \right] \left[ x^{v+1}J_{v+1}(ax) \right] dx=\int \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v+1}(ax) \right] dx $$
$$\int \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v+1}(ax) \right] dx=uv-\int vdu $$
$$\int \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v+1}(ax) \right] dx=-\frac{1}{a} \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] + \frac{b}{a}\int \left[ x^{v+1}J_{v}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] dx $$

So...
$$\int J_{v}(ax)J_{v}(bx)x dx = \left[ x^{-v}J_{v}(bx) \right] \left[ \frac{x^{v+1}}{a}J_{v+1}(ax) \right]+\frac{b}{a}\left[ -\frac{1}{a} \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] + \frac{b}{a}\int \left[ x^{v+1}J_{v}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] \right] dx $$
$$\int J_{v}(ax)J_{v}(bx)x dx = \frac{a}{a^2}\left[ x^{-v}J_{v}(bx) \right] \left[ x^{v+1}J_{v+1}(ax) \right] -
\frac{b}{a} \frac{1}{a} \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] + \frac{b}{a} \frac{b}{a}\int \left[ x^{v+1}J_{v}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] dx $$
$$a^{2}\int J_{v}(ax)J_{v}(bx)x dx = a\left[ x^{-v}J_{v}(bx) \right] \left[ x^{v+1}J_{v+1}(ax) \right] -
b \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] + b^2 \int J_{v}(bx) J_{v}(ax) xdx $$
$$(a^{2}-b^{2})\int J_{v}(ax)J_{v}(bx)x dx = a\left[ x^{-v}J_{v}(bx) \right] \left[ x^{v+1}J_{v+1}(ax) \right] -
b \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] $$
$$(a^{2}-b^{2})\int J_{v}(ax)J_{v}(bx)x dx = ax J_{v}(bx) J_{v+1}(ax) -
bx J_{v+1}(bx) J_{v}(ax) $$

And finally...
$$(a^{2}-b^{2}) \int_{0}^{P} J_{v}(ax)J_{v}(bx)x \,dx = P(a J_{v}(bP) J_{v+1}(aP) - b J_{v+1}(bP) J_{v}(aP)) $$

________________________________________________________________________________________
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top