Another1
- 39
- 0
show that
$$(a^2-b^2)\int_{0}^{P} J_{v}(ax)J_{v}(bx)x\,dx=P\left\{bJ_{v}(aP)J^{'}_{v}(bP)-aJ^{'}_{v}(ap)J_{v}(bP)\right\}$$
when $$J^{'}_{v}(aP)=\d{J_{v}(ax)}{(ax)},(x=P)$$
I don, have idea
$$(a^2-b^2)\int_{0}^{P} J_{v}(ax)J_{v}(bx)x\,dx=P\left\{bJ_{v}(aP)J^{'}_{v}(bP)-aJ^{'}_{v}(ap)J_{v}(bP)\right\}$$
when $$J^{'}_{v}(aP)=\d{J_{v}(ax)}{(ax)},(x=P)$$
I don, have idea