- #1
kelly0303
- 580
- 33
Hello! I have a plot of a function, obtained numerically, that looks like the red curve in the attached figure. It is hard to tell, but if you zoom in enough, inside the red shaded area you actually have oscillations at a very high frequency, ##\omega_0##. On top of that you have some sort of envelope, with a lower frequency, ##\omega_1##. I am trying to find a function that comes as close as possible to this. In green is what I obtained using:
$$A\sin(\omega_1 t/2)^2(1+\cos(\omega_0t/2))^2$$
where ##A## is just an overall amplitude (and I shifted everything for clarity). However I am not sure how to get the rest of the behaviour, basically fill in the gaps in my function relative to the red one. Can someone advice me on what functional form would I need to add to my expression to get that? Thank you!
$$A\sin(\omega_1 t/2)^2(1+\cos(\omega_0t/2))^2$$
where ##A## is just an overall amplitude (and I shifted everything for clarity). However I am not sure how to get the rest of the behaviour, basically fill in the gaps in my function relative to the red one. Can someone advice me on what functional form would I need to add to my expression to get that? Thank you!