- #1
ozkan12
- 149
- 0
Let $\left(E,d\right)$ be a complete metric space, and $T,S:E\to E$ two mappings such that for all $x,y\in E$,
$d\left(Tx,Sy\right)\le M\left(x,y\right)-\varphi\left(M\left(x,y\right)\right)$,
where $\varphi:[0,\infty)\to [0,\infty)$ is a lower semicontinuous function with $\varphi\left(t\right)>0$ for $t\in(0,\infty)$ and $\varphi(0)=0$ $M(x,y)=max\left\{d(x,y), d(Tx,x),d(Sy,y),\frac{1}{2}\left[d(y,Tx)+d(x,Sy)\right]\right\}$
Proof of cauchy sequence
We will show that $\left\{{x}_{n}\right\}$ is Cauchy sequence. Let
${c}_{n}=sup\left\{d\left({x}_{j},{x}_{k}\right):j,k\ge n\right\}$. Then ${c}_{n}$ is decreasing. İf $\lim_{{n}\to{\infty}}{c}_{n}=0$, then we are done. Assume that $\lim_{{n}\to{\infty}}{c}_{n}=c>0$. Choose $\varepsilon<\frac{c}{8}$ small enough and select $N$ such that for all $n\ge N$.
$d\left({x}_{n+1},{x}_{n}\right)<\varepsilon$ and ${c}_{n}<c+\varepsilon$. By the definition of ${c}_{N+1}$, there exists $m,n\ge N+1$ such that $d\left({x}_{m},{x}_{n}\right)>{c}_{n}-\varepsilon \ge c-\varepsilon$. Replace ${x}_{m}$ by ${x}_{m+1}$ if necessary. We may assume that $m$ is even, $n$ is odd, and $d\left({x}_{m},{x}_{n}\right)>c-2\varepsilon$. Then $d\left({x}_{m-1},{x}_{n-1}\right)>c-4\varepsilon$, and $d\left({x}_{m},{x}_{n}\right)=d\left(T{x}_{m-1},S{x}_{n-1}\right)\le M\left({x}_{m-1},{x}_{n-1}\right)-\varphi\left(M\left({x}_{m-1},{x}_{n-1}\right)\right)$
$\le max\left\{d\left({x}_{m-1},{x}_{n-1}\right),\varepsilon,\varepsilon,\frac{1}{2}\left[d\left({x}_{n-1},{x}_{m}\right)+d\left({x}_{m-1},{x}_{n}\right)\right]\right\}-\varphi\left(\frac{c}{2}\right)$. We have proved that ${c}_{N}-\varphi\left(\frac{c}{2}\right)>{c}_{N+1}$ (if $\varepsilon$ is small enough). This is impossible. Thus, we must have $c=0$
Question: How ${c}_{N}-\varphi\left(\frac{c}{2}\right)>{c}_{N+1}$ is condratiction ? I didnt understand...Please can you help me ? Thank you for your attention...Best wishes :)
$d\left(Tx,Sy\right)\le M\left(x,y\right)-\varphi\left(M\left(x,y\right)\right)$,
where $\varphi:[0,\infty)\to [0,\infty)$ is a lower semicontinuous function with $\varphi\left(t\right)>0$ for $t\in(0,\infty)$ and $\varphi(0)=0$ $M(x,y)=max\left\{d(x,y), d(Tx,x),d(Sy,y),\frac{1}{2}\left[d(y,Tx)+d(x,Sy)\right]\right\}$
Proof of cauchy sequence
We will show that $\left\{{x}_{n}\right\}$ is Cauchy sequence. Let
${c}_{n}=sup\left\{d\left({x}_{j},{x}_{k}\right):j,k\ge n\right\}$. Then ${c}_{n}$ is decreasing. İf $\lim_{{n}\to{\infty}}{c}_{n}=0$, then we are done. Assume that $\lim_{{n}\to{\infty}}{c}_{n}=c>0$. Choose $\varepsilon<\frac{c}{8}$ small enough and select $N$ such that for all $n\ge N$.
$d\left({x}_{n+1},{x}_{n}\right)<\varepsilon$ and ${c}_{n}<c+\varepsilon$. By the definition of ${c}_{N+1}$, there exists $m,n\ge N+1$ such that $d\left({x}_{m},{x}_{n}\right)>{c}_{n}-\varepsilon \ge c-\varepsilon$. Replace ${x}_{m}$ by ${x}_{m+1}$ if necessary. We may assume that $m$ is even, $n$ is odd, and $d\left({x}_{m},{x}_{n}\right)>c-2\varepsilon$. Then $d\left({x}_{m-1},{x}_{n-1}\right)>c-4\varepsilon$, and $d\left({x}_{m},{x}_{n}\right)=d\left(T{x}_{m-1},S{x}_{n-1}\right)\le M\left({x}_{m-1},{x}_{n-1}\right)-\varphi\left(M\left({x}_{m-1},{x}_{n-1}\right)\right)$
$\le max\left\{d\left({x}_{m-1},{x}_{n-1}\right),\varepsilon,\varepsilon,\frac{1}{2}\left[d\left({x}_{n-1},{x}_{m}\right)+d\left({x}_{m-1},{x}_{n}\right)\right]\right\}-\varphi\left(\frac{c}{2}\right)$. We have proved that ${c}_{N}-\varphi\left(\frac{c}{2}\right)>{c}_{N+1}$ (if $\varepsilon$ is small enough). This is impossible. Thus, we must have $c=0$
Question: How ${c}_{N}-\varphi\left(\frac{c}{2}\right)>{c}_{N+1}$ is condratiction ? I didnt understand...Please can you help me ? Thank you for your attention...Best wishes :)