- #1
Matt atkinson
- 116
- 1
Homework Statement
The ##B^+## meson decays through the weak interaction. One of its decay channels is
Homework Equations
Mass of ##B^+## is 5.279 GeV/c2, mass of
The Attempt at a Solution
max energy => when ##B^+ \parallel \bar{D^o}## and ##\rho^+## anti parallel to ##B^+##
min energy => when ##B^+ \parallel \bar{D^o}## and ##\rho^+\parallel B^+##
Max
conservation of momentum ; ##E_{\beta}=E_{\rho}+E_{\bar{D}}##
conservation of energy ; ##p_{\beta}=-p_{\rho}+p_{\bar{D}}##
$$E_{\bar{D}}^2=m_{\bar{D}}^2+p_{\bar{D}}^2$$
$$E_{\bar{D}}^2=m_{\bar{D}}^2+(p_{\beta}+p_{\rho})^2$$
$$E_{\bar{D}}^2=m_{\bar{D}}^2+p_{\beta}^2+p_{\rho}^2+2p_{\rho}p_{\beta}$$
$$E_{\bar{D}}^2=m_{\bar{D}}^2+p_{\beta}^2+E_{\rho}^2-m_{\rho}^2+2p_{\rho}p_{\beta}$$
$$E_{\bar{D}}^2=m_{\bar{D}}^2+p_{\beta}^2+(E_{\beta}-E_{\bar{D}})^2-m_{\rho}^2+2p_{\rho}p_{\beta}$$
$$E_{\bar{D}}=\frac{m_{\bar{D}}^2+p_{\beta}^2+E_{\beta}^2-m_{\rho}^2+2p_{\rho}p_{\beta}}{2E_{\beta}}$$
but after this I am not sure how to get rid of the ##p_{\rho}## from the ##2p_{\rho}p_{\beta}}{2E_{\beta}## term.
also to do the case for minimum energy, i would just have ##p_{\beta}=p_{\rho}+p_{\bar{D}}## for my momentum conservation right?
edit;using momentum conservation on the ##p_{\beta}=p_{\rho}+p_{\bar{D}}## term;
$$E_{\bar{D}}=\frac{m_{\bar{D}}^2+m_{\beta}^2-m_{\rho}^2+2p_{\bar{D}}p_{\beta}}{2E_{\beta}}$$
but this doesn't help too much because i still don't know ##p_{\bar{D}}##
Last edited: