- #1
onkel_tuca
- 6
- 0
Hello world!
I've done a few simulations of an emulsion droplet which is actuated by a laser beam. The droplet starts to move due to the laser light. I don't want to talk too much about the physics behind this but more discuss the nonlinear dynamics of the trajectories. Depending on a parameter "1/kappa", the droplet dynamics is either
(1) damped leading to a stop of the drop
(2) oscillating around the beam
(3) oscillating around the beam, but then changing its direction
(4) the droplet shoots completely out of the laser beam and stops.
From my understanding, the first bifurcation between (1) and (2) is a typical Hopf bifurcation. See attached plot. There you see four phase-space plots (velocity vs. displacement) and a plot of the amplitude A and wavenumber \nu(=1/ wavelength) of the oscillations.
However I'm not sure if one can classify the second bifurcation between (2) and (3). In case (3) the dynamics is first along oscillation (2), then the droplet changes direction and increases its amplitude A and wavenumber \nu(=1/ wavelength of oscillation) and stays on the outer orbit.
Thus my question is: Is there a name for a bifurcation between two (very) different oscillations?
Cheers!
I've done a few simulations of an emulsion droplet which is actuated by a laser beam. The droplet starts to move due to the laser light. I don't want to talk too much about the physics behind this but more discuss the nonlinear dynamics of the trajectories. Depending on a parameter "1/kappa", the droplet dynamics is either
(1) damped leading to a stop of the drop
(2) oscillating around the beam
(3) oscillating around the beam, but then changing its direction
(4) the droplet shoots completely out of the laser beam and stops.
From my understanding, the first bifurcation between (1) and (2) is a typical Hopf bifurcation. See attached plot. There you see four phase-space plots (velocity vs. displacement) and a plot of the amplitude A and wavenumber \nu(=1/ wavelength) of the oscillations.
However I'm not sure if one can classify the second bifurcation between (2) and (3). In case (3) the dynamics is first along oscillation (2), then the droplet changes direction and increases its amplitude A and wavenumber \nu(=1/ wavelength of oscillation) and stays on the outer orbit.
Thus my question is: Is there a name for a bifurcation between two (very) different oscillations?
Cheers!