- #1
Dustinsfl
- 2,281
- 5
$N_{t + 1} =\begin{cases}rN_t^{1 - b}, & N_t > K\\
rN_t, & N_t < K
\end{cases}$The steady states are when $N_{t + 1} = N_t = N_*$.
$$
N_{*} =\begin{cases}rN_*^{1 - b}, & N_* > K\\
rN_*, & N_* < K
\end{cases}
$$
So the steady states are $N_* = \sqrt{r}$ and $N_* = 0$.
I am not sure how to check for stability and bifurcations values for a piece wise defined model.
rN_t, & N_t < K
\end{cases}$The steady states are when $N_{t + 1} = N_t = N_*$.
$$
N_{*} =\begin{cases}rN_*^{1 - b}, & N_* > K\\
rN_*, & N_* < K
\end{cases}
$$
So the steady states are $N_* = \sqrt{r}$ and $N_* = 0$.
I am not sure how to check for stability and bifurcations values for a piece wise defined model.