- #1
stunner5000pt
- 1,465
- 4
- Homework Statement
- Determine the coefficient of the x^2 term in the binomial expansion of
[tex] \frac{(1+3x)^3}{(1+2x)^2} [/tex]
- Relevant Equations
- binomial theorem: https://en.wikipedia.org/wiki/Binomial_series
I'm sort of stumped here , do i do this?
[tex] (1+3x) \left( \frac{1+3x}{1+2x} \right)^2 = (1+3x) \left( \frac{3}{2} - \frac{1}{2(2x+1)} \right)^2 [/tex]
[tex] (1+3x) \left( \frac{3}{2} \right)^2 \left( 1 + \frac{-1}{3(2x+1)} \right)^2 [/tex]
and then apply the binomial theorem formula on the squared term above? But this gives way to a series that looks like this
[tex] \frac{9}{4} (1+3x) \left( 1 + 2 \frac{-1}{3(2x+1)} + \frac{2(2-1)}{2!} \left( \frac{-1}{3(2x+1)} \right)^2 + ... \right) [/tex]
or is there a different (or more efficient way) to go about this
your help is greatly appreciated
[tex] (1+3x) \left( \frac{1+3x}{1+2x} \right)^2 = (1+3x) \left( \frac{3}{2} - \frac{1}{2(2x+1)} \right)^2 [/tex]
[tex] (1+3x) \left( \frac{3}{2} \right)^2 \left( 1 + \frac{-1}{3(2x+1)} \right)^2 [/tex]
and then apply the binomial theorem formula on the squared term above? But this gives way to a series that looks like this
[tex] \frac{9}{4} (1+3x) \left( 1 + 2 \frac{-1}{3(2x+1)} + \frac{2(2-1)}{2!} \left( \frac{-1}{3(2x+1)} \right)^2 + ... \right) [/tex]
or is there a different (or more efficient way) to go about this
your help is greatly appreciated