MHB Bland - Proposition 4.1.1 - (4) => (1)

  • Thread starter Thread starter Math Amateur
  • Start date Start date
Click For Summary
The discussion centers on understanding the proof of Proposition 4.1.1 in Paul E. Bland's "Rings and Their Modules," specifically the implication from statement (4) to (1). The key point is that if a finite set of generators spans a module, then each generator can be expressed as a finite sum of elements from a family of submodules. The participants clarify that since the sum of the family of modules is finitely nonzero, each generator can be represented by a finite subset of the indices from the family. This leads to the conclusion that for each generator, there exists a finite set of indices such that the generator is included in the sum of the corresponding submodules. The discussion concludes with the original poster gaining clarity on the logic behind the proof.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am trying to understand Chapter 4, Section 4.1 on generating and cogenerating classes and need help with the proof of $$(4) \Longrightarrow (1)$$ in Proposition 4.1.1.

Proposition 4.1.1 and its proof read as follows:

https://www.physicsforums.com/attachments/3656
View attachment 3657

In the proof of $$(4) \Longrightarrow (1)$$ in the text above, Bland writes:" ... ... Let $$\{ M_\alpha \}_\Delta$$ be a family of submodules of $$M$$ that spans $$M$$. If $$X = \{ x_1, x_2, \ ... \ ... \ , x_n \}$$ is a finite set of generators of $$M$$, then $$M = \sum_{ i = 1}^n x_i R = \sum_\Delta M_\alpha$$.

Thus, for each $$i$$, there is a finite set $$F_i \subseteq \Delta$$ such that $$x_i \in \sum_{F_i} M_\alpha$$. ... ... "My question is as follows:

Why, exactly, does the statement:

... ... for each $$i$$, there is a finite set $$F_i \subseteq \Delta$$ such that $$x_i \in \sum_{F_i} M_\alpha$$

follow from the two previous statements?Hope someone can help ... ...

Peter
 
Last edited:
Physics news on Phys.org
Hi Peter,

The sum of any family of modules is a finitely nonzero sum.
 
Fallen Angel said:
Hi Peter,

The sum of any family of modules is a finitely nonzero sum.
Hi Fallen Angel ... thanks for the help in this matter ... ... however, I am still finding this difficult to follow ... are you able to be more explicit and explain further ...

Peter
 
Hi Peter,

You got the equality $\displaystyle\sum_{i=1}^{n}x_{i}R=\displaystyle\sum_{\Delta}M_{\alpha}$.

So $x_{i}\in \displaystyle\sum_{\Delta}M_{\alpha}$.

Then, in principle $x_{i}=\displaystyle\sum_{\Delta}m_{\alpha}$ with $m_{\alpha}\in M_{\alpha}$.

But this sum is finitely non zero, i.e. $m_{\alpha}=0$ for almost every $\alpha \in \Delta$

So $x_{i}=\displaystyle\sum_{F_{i}\subset \Delta}m_{\alpha}$ where $F_{i}$ is finite.($F_{i}=\{\alpha \in \Delta \ : \ m_{\alpha}\neq 0\}$)
 
Fallen Angel said:
Hi Peter,

You got the equality $\displaystyle\sum_{i=1}^{n}x_{i}R=\displaystyle\sum_{\Delta}M_{\alpha}$.

So $x_{i}\in \displaystyle\sum_{\Delta}M_{\alpha}$.

Then, in principle $x_{i}=\displaystyle\sum_{\Delta}m_{\alpha}$ with $m_{\alpha}\in M_{\alpha}$.

But this sum is finitely non zero, i.e. $m_{\alpha}=0$ for almost every $\alpha \in \Delta$

So $x_{i}=\displaystyle\sum_{F_{i}\subset \Delta}m_{\alpha}$ where $F_{i}$ is finite.($F_{i}=\{\alpha \in \Delta \ : \ m_{\alpha}\neq 0\}$)
Thanks for the help, Fallen Angel ... I can now understand the logic ...

Thanks again,

Peter
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
37
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K