Block on an incline adjacent to a wall

In summary, the net force on the block is mgsin(theta) and the net horizontal force on the wedge is zero. The question asks for the magnitude of the force that the wall exerts on the wedge, which is ultimately equal to the normal force of the block on the incline. The normal force is mgcos(theta), but that is at an angle, so the horizontal component is mgcos(theta)*sin(theta). Therefore, the magnitude of the force that the wall exerts on the wedge is mgcos(theta)*sin(theta), or mgsin(2theta)/2. The force of the block on the incline is mgcos(theta) pointing into the incline, while the normal force of the incline on
  • #1
jaded18
150
0
A wedge with an inclination of angle theta rests next to a wall. A block of mass m is sliding down the plane, as shown. There is no friction between the wedge and the block or between the wedge and the horizontal surface.
http://session.masteringphysics.com/problemAsset/1010942/31/MFS_cf_11.jpg
Find the magnitude, F_ww, of the force that the wall exerts on the wedge.
___
i know that the net force on the block is just = mgsin(theta) .. and i also know that the net horizontal force on the wedge is zero, but the problem asks for the magnitude of the force that the wall exerts on the wedge .. so I'm getting nowhere. help?
 
Physics news on Phys.org
  • #2
Hint: What force does the block exert on the incline?
 
  • #3
i'm not sure i understand where you are getting at, but the block exerts a force of mg on the incline .. no?
 
  • #4
No. mg is the weight of the object. If it were resting on the incline, then you'd be correct. But it's not. Hint: Think normal force.
 
  • #5
normal force is mgcos(theta) so the force the the block exerts on the incline is just the negative of that ?? -mgcos(theta) ?? I'm sorry I'm just guessing here...
 
  • #6
guys, i still don't have it ..
 
  • #7
no mgcos(theta) is correct. that is the FN on the block by the incline and vice versa, they must equalize.

I suspect the force the wall on the wedge is zero because they are just next to each other not leaning and don't seem to be applying any forces on each other.

I don't know.
 
  • #8
yeah NET force is 0 but obviously that's not the answer it's looking for ..
 
  • #9
My best guess would be the horizontal component of the frictional force. but since there is no friction, there is no frictional force. So my guess would be 0N. The wall does not exert any force on the wedge. That is what the question is asking for right?
 
Last edited:
  • #10
for sure, it's NOT 0 ..lol
 
  • #11
jaded18 said:
normal force is mgcos(theta) so the force the the block exerts on the incline is just the negative of that ?? -mgcos(theta) ?? I'm sorry I'm just guessing here...
You shouldn't have to guess about the normal force--or Newton's 3rd law. Yes, the normal force of incline on block is mgcos(theta) pointing out of the incline surface, so the force of block on incline is mgcos(theta) pointing into the incline. Find its x and y components.
 
  • Like
Likes Poetria
  • #12
The normal force is mgcos(theta), but that is at an angle. you need to take the horizontal component of that force, mgcos(theta)*sin(theta). (or mgsin(2theta)/2, if you want to cut down on trig terms)

Think about it this way... the force by the wall on the wedge has to be 0 at 2 points, 0 degrees of wedge (block is flat) and 90 degrees (block doesn't touch wedge)... does this statement work for both of those?
 

FAQ: Block on an incline adjacent to a wall

What is a block on an incline adjacent to a wall?

A block on an incline adjacent to a wall is a common physics problem that involves a block or object placed on an inclined plane that is also in contact with a wall. This setup creates a scenario where the gravitational force of the block is acting both parallel to the incline and perpendicular to the wall.

How does the angle of the incline affect the block's motion?

The angle of the incline has a direct effect on the block's motion. The steeper the incline, the more the gravitational force is acting parallel to the incline, causing the block to accelerate down the incline. As the incline angle decreases, the block's motion will also slow down.

What is the relationship between the block's weight and the normal force from the wall?

In this scenario, the normal force from the wall acts as a support force to counteract the weight of the block. The normal force will increase as the block's weight increases and decrease as the block's weight decreases.

How does friction play a role in this scenario?

Friction is an important factor in this scenario as it acts in the opposite direction of motion, slowing down or preventing the block from sliding down the incline. The amount of friction present is dependent on the coefficient of friction between the block and the incline.

How can this setup be used to study forces and motion?

By analyzing the forces acting on the block on an incline adjacent to a wall, we can study the concepts of weight, normal force, and friction. This setup can also be used to calculate the acceleration and velocity of the block, as well as to practice problem-solving and critical thinking skills.

Similar threads

Back
Top