- #1
inferno298
- 25
- 0
Homework Statement
A textbook of mass m = 1.24 kg starts at rest on a
frictionless inclined plane (angle = 30◦). Although there is
no friction, suppose there is a drag force (due to air resistance)
acting on the book which is proportional to the speed squared
and is described by the equation F = kmv2, where k = 0.86
m−1. How much time does it take for the textbook to slide a
distance d = 1.65 m down the plane? (Hint: This one is tricky,
you will need to solve the integral by hand using a hyperbolic
trig substitution.)
Homework Equations
Just F=m*a
drag force = k*m*v^2
The Attempt at a Solution
So the mass keeps canceling on me whenever I run the problem, don't know if I actually need it for this one. I changed my coordinate system so positive x was parallel to the incline and positive y was perpendicular to it.
Forces are gravity broken in componets now, normal force only acting in positive y, canceled out by gravities y component. drag force in -x direction and +x component of gravity.
Vf= final velocity
y- direction F=ma
F= 0, its moving down the incline
x - direction F= ma
m*g*cos(theata)-k*m*v^2 = m dv/dt
solve it for time with given conditions and I got
T = (1/(Sqrt[g*sin(theata)*k])*ArcTanh[Sqrt[k/(g*sin(theata))]*Vf]
Switch the beginning equation to m*g*cos(theata)-k*m*v^2 = m*v* dv/dx and solve for the distance given the distance yields:
x = (1/2*k)*Ln((g*sin(theata)-k*Vf^2)/(g*sin(theata)))
Solve that equation for Vf yields:
Vf = Sqrt[(g*sin(theata)/k)*(1-e^(2*k*x))/k)
Sub into T equation and get:
T = (1/(Sqrt[g*sin(theata)*k])*ArcTanh(1-e^(2*k*x))
I keep getting very small times less than one and complex numbers which I feel are wrong, well its telling me they are wrong. I might have set it up wrong when defining my coordinate system or something. if someone can help me that would be awesome, even if its on a regular defined coordinate axes.