Bohr radius of Earth-Sun system

AI Thread Summary
The discussion centers on calculating the Bohr radius for the Earth-Sun system by substituting gravitational forces for electromagnetic forces. Participants clarify that the Earth and Sun are effectively electrostatically neutral, and the original question misinterprets the application of the Bohr radius formula. Instead of using charge, the focus should be on gravitational interactions, leading to a derivation similar to the traditional Bohr model but using gravitational equations. The final goal is to express the smallest radius in terms of quantized angular momentum, using the gravitational force equation. The conversation emphasizes the importance of correctly framing the problem to derive the appropriate gravitational equivalent of the Bohr radius.
songoku
Messages
2,485
Reaction score
393
Homework Statement
Let the Sun and Earth are put as part Hydrogen atom. Find the Bohr radius in this case
Relevant Equations
Bohr radius = ##\frac{n^2 h^2}{4 \pi^{2}mkq^2}##
When I looked up for Bohr radius, the formula has ##q## in it, which is charge of the object. For this question, the electron and proton are replaced by sun and Earth so it means that I have to know the charge of Earth and sun?

Thanks
 
Physics news on Phys.org
songoku said:
Homework Statement:: Let the Sun and Earth are put as part Hydrogen atom. Find the Bohr radius in this case
Relevant Equations:: Bohr radius = ##\frac{n^2 h^2}{4 \pi^{2}mkq^2}##

When I looked up for Bohr radius, the formula has ##q## in it, which is charge of the object. For this question, the electron and proton are replaced by sun and Earth so it means that I have to know the charge of Earth and sun?

Thanks
The Earth is kept in orbit by a gravitational force, not by an electromagnetic force!

The Earth and Sun are approximately electrostatically neutral.
 
songoku said:
Homework Statement:: Let the Sun and Earth are put as part Hydrogen atom. Find the Bohr radius in this case.
The question could be worded better. It looks like you are being asked to find the gravitational equivalent of the Bohr radius for the Earth orbitting the sun.

Make sure you can follow the (quite simple) derivation of the usual Bohr radius formula for an electron in a hydrogen atom. Look it up if needed.

Then repeat the derivation, but - as already hinted by @PeroK - using the gravitational (rather than electrostatic) force between the sun and earth.

Edit - typo's corrected.
 
Steve4Physics said:
The question could be worded better. It looks like you are being asked to find the gravitational equivalent of the Bohr radius for the Earth orbitting the sun.

Make sure you can follow the (quite simple) derivation of the usual Bohr radius formula for an electron in a hydrogen atom. Look it up if needed.

Then repeat the derivation, but - as already hinted by @PeroK - using the gravitational (rather than electrostatic) force between the sun and earth.

Edit - typo's corrected.
$$G\frac{Mm}{r^2}=m\frac{v^2}{r}$$

Is this what you mean?

Thanks
 
Yes then write this in terms of angular momentum and then assume it is "quantized". Solve for (smallest) r.
 
Using quantization of angular momentum:
$$mvr=\frac{nh}{2\pi}$$
$$v=\frac{nh}{2\pi mr}$$

Substitute to equation of force:
$$G\frac{Mm}{r^2}=m\frac{v^2}{r}$$
$$G\frac{M}{r}=\frac{n^2h^2}{4\pi^{2}m^2r^2}$$

To find the smallest radius, I just need to use ##n=1## and solve for ##r##

Thank you very much PeroK, Steve4Physics, hutchphd
 
  • Like
Likes Steve4Physics
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top