- #1
mahler1
- 222
- 0
Homework Statement .
Prove that if ##\sum_{n=1}^{\infty} (a_n-a_{n-1})## converges absolutely and ##\sum_{n=1}^{\infty} z_n## converges, then ##\sum_{n=1}^{\infty} a_nz_n## converges.
The attempt at a solution.
I know that if ##Z_N=z_0+z_1+...+z_N##, then ##\sum_{n=0}^N a_nz_n= a_NZ_N-\sum_{n=0}^{N-1} Z_n(a_{n+1}-a_n)##
I am not so sure how can I use the hypothesis given to this new expression or if it would be more convenient to express the original series in another way.
Prove that if ##\sum_{n=1}^{\infty} (a_n-a_{n-1})## converges absolutely and ##\sum_{n=1}^{\infty} z_n## converges, then ##\sum_{n=1}^{\infty} a_nz_n## converges.
The attempt at a solution.
I know that if ##Z_N=z_0+z_1+...+z_N##, then ##\sum_{n=0}^N a_nz_n= a_NZ_N-\sum_{n=0}^{N-1} Z_n(a_{n+1}-a_n)##
I am not so sure how can I use the hypothesis given to this new expression or if it would be more convenient to express the original series in another way.
Last edited: