- #1
aaaa202
- 1,169
- 2
Consider a resevoir of N atoms in contact with a single atom. Obviously, if the atom is in a high energy state then the multiplicity left for the resevoir is significantly lower. So this is in agreement with the fact that looking at the single atom, the probability for the ground state is very high. But now suppose that there is a lot of energy among the atoms. If the ground state is overwhelmingly probable what happens to all this energy in the Boltzmann distribution, where does it go?
My question is probably a bit confusing, but it is just weird for me, that you get that the ground state is overwhelmingly probable for each atom in the resevoir, even if the energy density in the resevoir is enormous - because you do get that for low temperatures right?
My question is probably a bit confusing, but it is just weird for me, that you get that the ground state is overwhelmingly probable for each atom in the resevoir, even if the energy density in the resevoir is enormous - because you do get that for low temperatures right?