- #1
happyparticle
- 465
- 21
- TL;DR Summary
- Trying to understand the right hand side of the Boltzmann equation for annihilation for the rate of change in the abundance of a given particle.
In the Dodelson's textbook, the author introduce the Boltzmann equation for annihilation.
##a^{-3} \frac{d(n_1 a)}{dt} = \int \frac{d^3 p_1}{(2 \pi)^3 2E_1} \int \frac{d^3 p_2}{(2 \pi)^3 2E_2} \int \frac{d^3 p_3}{(2 \pi)^3 2E_3} \int \frac{d^3 p_4}{(2 \pi)^3 2E_4} \times (2 \pi)^4 \delta^3 (p_1 + p_2 - p_3 - p_4) \delta (E_1 + E_2 - E_3 - E_4)|M|^2 \times {f_3 f_4[1 \pm f_1] [1 \pm f_2] - f_1 f_2 [1 \pm f_3] [1 \pm f_4]}##
I don't understand the right hand part of the equation. Where all the part comes from? Why ##p_i, f_i## are outside of the integrals? What |M| means? I can't figure out how all the right hand side is related to the rate of change in the abundance of a given particle.
I'm guessing that ##n_i## is the particle density and ##f_i## is the the expected number of particles in an energy state.
##a^{-3} \frac{d(n_1 a)}{dt} = \int \frac{d^3 p_1}{(2 \pi)^3 2E_1} \int \frac{d^3 p_2}{(2 \pi)^3 2E_2} \int \frac{d^3 p_3}{(2 \pi)^3 2E_3} \int \frac{d^3 p_4}{(2 \pi)^3 2E_4} \times (2 \pi)^4 \delta^3 (p_1 + p_2 - p_3 - p_4) \delta (E_1 + E_2 - E_3 - E_4)|M|^2 \times {f_3 f_4[1 \pm f_1] [1 \pm f_2] - f_1 f_2 [1 \pm f_3] [1 \pm f_4]}##
I don't understand the right hand part of the equation. Where all the part comes from? Why ##p_i, f_i## are outside of the integrals? What |M| means? I can't figure out how all the right hand side is related to the rate of change in the abundance of a given particle.
I'm guessing that ##n_i## is the particle density and ##f_i## is the the expected number of particles in an energy state.