- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
Consider a nonuniform partition $a=t_0< t_1< \dots < t_{\nu}=b$ and assume that if $h_n=t^{n+1}-t^n, 0 \leq n \leq N-1 $ is the changeable step, then $\min_{n} h_n > \lambda \max_{n} h_n, \lambda>0$ independent of $n$.
Show a bound of the error of Euler method analogous to
$$||y^n-y(t^n)|| \leq h c_1 \frac{e^{L(t^n-a)}}{2L} \max_{t \in [a,t^n]} ||y^{(2)} (t)||$$
where $h=\max_{n} h_n$.
According to my lecture notes:We will use the following lemma:
Let $\delta$ be a positive number and $K, d_0, d_1, \dots$ non-negative numbers such that
$$d_{i+1} \leq (1+ \delta) d_i+K, i=0,1, \dots$$
Then it holds
$$d_n \leq e^{n \delta} d_0+ K \frac{e^{n \delta}-1}{\delta}, n=0,1,2, \dots$$
$$\left\{\begin{matrix}
y^{n+1}=y^n+h_n f(t^n,y^n) &, n=0,1, \dots, N-1 \\
y^0=y(0) &
\end{matrix}\right.$$
Expanding $y$ with Taylor, we have:
$$y(t^{n+1})=y(t^n)+ h_n y'(t^n)+ \frac{h^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$
From the differential equation we have:
$$y(t^{n+1})=y(t^n)+ h_n f(t^n, y(t^n))+ \frac{h^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$
$$y(t^{n+1})-y^{n+1}=y(t^n)-y^n+h_n [f(t^n, y(t^n))-f(t^n,y^n)]+ \frac{h h_n}{2} y''( \xi_n)$$
$$\epsilon^{n+1}= \epsilon^n+ h_n [f(t^n, y(t^n))-f(t^n,y^n)]+ \frac{h h_n}{2} y''(\xi_n)$$
and so on...
Why is it as follows?
$$y(t^{n+1})=y(t^n)+ h_n y'(t^n)+ \frac{h^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$Shouldn't we have $h_n$ at each point where we have the step, i.e. shouldn't it be as follows?
$$y(t^{n+1})=y(t^n)+ h_n y'(t^n)+ \frac{h_n^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$
Or am I wrong? (Worried)
Consider a nonuniform partition $a=t_0< t_1< \dots < t_{\nu}=b$ and assume that if $h_n=t^{n+1}-t^n, 0 \leq n \leq N-1 $ is the changeable step, then $\min_{n} h_n > \lambda \max_{n} h_n, \lambda>0$ independent of $n$.
Show a bound of the error of Euler method analogous to
$$||y^n-y(t^n)|| \leq h c_1 \frac{e^{L(t^n-a)}}{2L} \max_{t \in [a,t^n]} ||y^{(2)} (t)||$$
where $h=\max_{n} h_n$.
According to my lecture notes:We will use the following lemma:
Let $\delta$ be a positive number and $K, d_0, d_1, \dots$ non-negative numbers such that
$$d_{i+1} \leq (1+ \delta) d_i+K, i=0,1, \dots$$
Then it holds
$$d_n \leq e^{n \delta} d_0+ K \frac{e^{n \delta}-1}{\delta}, n=0,1,2, \dots$$
$$\left\{\begin{matrix}
y^{n+1}=y^n+h_n f(t^n,y^n) &, n=0,1, \dots, N-1 \\
y^0=y(0) &
\end{matrix}\right.$$
Expanding $y$ with Taylor, we have:
$$y(t^{n+1})=y(t^n)+ h_n y'(t^n)+ \frac{h^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$
From the differential equation we have:
$$y(t^{n+1})=y(t^n)+ h_n f(t^n, y(t^n))+ \frac{h^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$
$$y(t^{n+1})-y^{n+1}=y(t^n)-y^n+h_n [f(t^n, y(t^n))-f(t^n,y^n)]+ \frac{h h_n}{2} y''( \xi_n)$$
$$\epsilon^{n+1}= \epsilon^n+ h_n [f(t^n, y(t^n))-f(t^n,y^n)]+ \frac{h h_n}{2} y''(\xi_n)$$
and so on...
Why is it as follows?
$$y(t^{n+1})=y(t^n)+ h_n y'(t^n)+ \frac{h^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$Shouldn't we have $h_n$ at each point where we have the step, i.e. shouldn't it be as follows?
$$y(t^{n+1})=y(t^n)+ h_n y'(t^n)+ \frac{h_n^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$
Or am I wrong? (Worried)