MHB Bound of Euler method- nonuniform partition

AI Thread Summary
The discussion focuses on deriving an error bound for the Euler method using a nonuniform partition, specifically under the condition that the minimum step size is greater than a positive multiple of the maximum step size. The key formula for the error bound is presented, which involves the maximum step size and the second derivative of the function. A lemma is referenced to support the derivation of the error bound. A participant questions the application of step sizes in the Taylor expansion, suggesting that each term should include the step size squared, which is acknowledged as a valid point by another participant. The conversation highlights the importance of precision in mathematical formulations.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Consider a nonuniform partition $a=t_0< t_1< \dots < t_{\nu}=b$ and assume that if $h_n=t^{n+1}-t^n, 0 \leq n \leq N-1 $ is the changeable step, then $\min_{n} h_n > \lambda \max_{n} h_n, \lambda>0$ independent of $n$.
Show a bound of the error of Euler method analogous to

$$||y^n-y(t^n)|| \leq h c_1 \frac{e^{L(t^n-a)}}{2L} \max_{t \in [a,t^n]} ||y^{(2)} (t)||$$

where $h=\max_{n} h_n$.

According to my lecture notes:We will use the following lemma:

Let $\delta$ be a positive number and $K, d_0, d_1, \dots$ non-negative numbers such that

$$d_{i+1} \leq (1+ \delta) d_i+K, i=0,1, \dots$$

Then it holds

$$d_n \leq e^{n \delta} d_0+ K \frac{e^{n \delta}-1}{\delta}, n=0,1,2, \dots$$

$$\left\{\begin{matrix}
y^{n+1}=y^n+h_n f(t^n,y^n) &, n=0,1, \dots, N-1 \\
y^0=y(0) &
\end{matrix}\right.$$

Expanding $y$ with Taylor, we have:

$$y(t^{n+1})=y(t^n)+ h_n y'(t^n)+ \frac{h^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$

From the differential equation we have:

$$y(t^{n+1})=y(t^n)+ h_n f(t^n, y(t^n))+ \frac{h^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$

$$y(t^{n+1})-y^{n+1}=y(t^n)-y^n+h_n [f(t^n, y(t^n))-f(t^n,y^n)]+ \frac{h h_n}{2} y''( \xi_n)$$

$$\epsilon^{n+1}= \epsilon^n+ h_n [f(t^n, y(t^n))-f(t^n,y^n)]+ \frac{h h_n}{2} y''(\xi_n)$$

and so on...

Why is it as follows?

$$y(t^{n+1})=y(t^n)+ h_n y'(t^n)+ \frac{h^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$Shouldn't we have $h_n$ at each point where we have the step, i.e. shouldn't it be as follows?

$$y(t^{n+1})=y(t^n)+ h_n y'(t^n)+ \frac{h_n^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$

Or am I wrong? (Worried)
 
Mathematics news on Phys.org
Hey! (Mmm)

evinda said:
Shouldn't we have $h_n$ at each point where we have the step, i.e. shouldn't it be as follows?

$$y(t^{n+1})=y(t^n)+ h_n y'(t^n)+ \frac{h_n^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$

Or am I wrong? (Worried)

You're right. Looks like a bit of sloppiness. (Nod)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
2
Views
1K
Replies
1
Views
1K
Replies
38
Views
11K
Replies
1
Views
2K
Replies
3
Views
1K
Replies
3
Views
2K
Back
Top