- #1
happyparticle
- 456
- 21
- Homework Statement
- Consider the steady flow pattern produced when an impenetrable rigid spherical obstacle is placed in a uniformly flowing, incompressible, inviscid fluid.
- Relevant Equations
- ##r(r,\theta, \phi) = V \hat{z} , r \to\infty##
##\vec{v} = - \nabla \Phi##
I'm trying to find how the author finds the boundary condition at ##r\to\infty## is ## \Phi(r,\theta, \phi) = - V r cos \theta##.
Using the spherical coordinates.
##- V \hat{z} = \nabla \Phi##
##- V ( cos \theta \hat{r} - sin \theta \hat{\theta}) = \frac{d \Phi}{dr}\hat{r} + 1/r \frac{d \Phi}{d \theta} \hat{\theta} + \frac{1}{r sin \theta} \frac{d \Phi}{ d \phi} \hat{\phi} ##
I'm not sure to understand why most of the terms vanishes.
Using the spherical coordinates.
##- V \hat{z} = \nabla \Phi##
##- V ( cos \theta \hat{r} - sin \theta \hat{\theta}) = \frac{d \Phi}{dr}\hat{r} + 1/r \frac{d \Phi}{d \theta} \hat{\theta} + \frac{1}{r sin \theta} \frac{d \Phi}{ d \phi} \hat{\phi} ##
I'm not sure to understand why most of the terms vanishes.