MHB Boundary conditions spherical coordinates

Dustinsfl
Messages
2,217
Reaction score
5
Laplace axisymmetric
$u(a,\theta) = f(\theta)$ and $u(b,\theta) = 0$ where $a<\theta<b$.

The general soln is
$$
u(r,\theta) = \sum_{n=0}^{\infty}A_n r^n P_n(\cos\theta) + B_n\frac{1}{r^{n+1}}P_n(\cos\theta)
$$

I am supposed to obtain
$$
u(r,\theta) = \sum_{n = 0}^{\infty}A_n\left[\left(\frac{r}{b}\right)^n - \frac{b}{r}^{n + 1}\right]P_n(\cos\theta)
$$
with
$$
A_nb^n\left[\left(\frac{r}{b}\right)^n - \frac{b}{r}^{n + 1}\right] = \frac{2n + 1}{2}\int_0^{\pi}f(\theta)P_n(\cos\theta) \sin \theta d\theta.
$$
Using the BC I can't obtain that.
 
Physics news on Phys.org
dwsmith said:
Laplace axisymmetric
$u(a,\theta) = f(\theta)$ and $u(b,\theta) = 0$ where $a<\theta<b$.

The general soln is
$$
u(r,\theta) = \sum_{n=0}^{\infty}A_n r^n P_n(\cos\theta) + B_n\frac{1}{r^{n+1}}P_n(\cos\theta)
$$

I am supposed to obtain
$$
u(r,\theta) = \sum_{n = 0}^{\infty}A_n\left[\left(\frac{r}{b}\right)^n - \frac{b}{r}^{n + 1}\right]P_n(\cos\theta)
$$
with
$$
A_nb^n\left[\left(\frac{r}{b}\right)^n - \frac{b}{r}^{n + 1}\right] = \frac{2n + 1}{2}\int_0^{\pi}f(\theta)P_n(\cos\theta) \sin \theta d\theta.
$$
Using the BC I can't obtain that.

I have this solved.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...

Similar threads

Back
Top