- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I have to solve the following boundary value problem:
$$u_{xx}+=u_{yy}=0, 0<x<a, 0<y<b$$
$$u_x(0,y)=u_x(a,y)=0, 0<y<b$$
$$u(x,0)=x, u_y(x,b)=0, 0<x<a$$
By using the method of separation of variables, the solution is of the form $u(x,y)=X(x)Y(y)$.
By substituting this it the problem we get the following problems:
$$\left.\begin{matrix}
X''+\lambda X=0, 0<x<a\\
X'(0)=X'(a)=0
\end{matrix}\right\}(1)$$
and
$$\left.\begin{matrix}
Y''-\lambda Y=0, 0<y<b\\
Y'(b)=0
\end{matrix}\right\}(2)$$
$$u(x,0)=X(x)Y(0)=x$$
Solving the problem $(1)$, the eigenvalues are:
So
$$X_n(x)=\left\{\begin{matrix}
1 & ,n=0\\
\cos{(\frac{n \pi x}{a})} & , n=1,2,3, \dots
\end{matrix}\right.$$
By solving the problem $(2)$ we get:
$$Y_n(x)=\left\{\begin{matrix}
A_0 y +B_0 & ,n=0\\
A_n \sinh{(\frac{n \pi y}{a})}+B_n \cosh{(\frac{n \pi y}{a})} & , n=1,2,3, \dots
\end{matrix}\right.$$
Then $$Y_n '(x)=\left\{\begin{matrix}
A_0 & ,n=0\\
\frac{n \pi}{a}A_n \cosh{(\frac{n \pi y}{a})}+\frac{n \pi }{a} B_n \sinh{(\frac{n \pi y}{a})} & , n=1,2,3, \dots
\end{matrix}\right.$$
$Y'(b)=0 \Rightarrow$
$$A_0 \text{ and } \frac{n \pi}{a}A_n \cosh{(\frac{n \pi b}{a})}+\frac{n \pi }{a} B_n \sinh{(\frac{n \pi b}{a})}=0 \Rightarrow A_n=B_n \tanh{(\frac{n \pi b}{a})}$$
So $$Y_n(x)=\left\{\begin{matrix}
B_0 & ,n=0\\
B_n \tanh{(\frac{n \pi b}{a})} \sinh{(\frac{n \pi y}{a})}+B_n \cosh{(\frac{n \pi y}{a})} & , n=1,2,3, \dots
\end{matrix}\right.$$
So the solution solution of the initial problem is of the form:
$$u(x,y)=B_0+ \sum_{n=1}^{\infty}{B_n[ \tanh{(\frac{n \pi b}{a})} \sinh{(\frac{n \pi y}{a})}+ \cosh{(\frac{n \pi y}{a})}] \cos{(\frac{n \pi x}{a})}}$$
$$u(x,0)=x \Rightarrow B_0+ \sum_{n=1}^{\infty}{B_n \cos{(\frac{n \pi x}{a})}}=x$$
To find the coefficients $B_0$ and $B_n$, can I use the expansion of $x$ to the eigenfunctions of the problem, although $x$ does not satisfy the boundary conditions of the problem? (Wondering)
I have to solve the following boundary value problem:
$$u_{xx}+=u_{yy}=0, 0<x<a, 0<y<b$$
$$u_x(0,y)=u_x(a,y)=0, 0<y<b$$
$$u(x,0)=x, u_y(x,b)=0, 0<x<a$$
By using the method of separation of variables, the solution is of the form $u(x,y)=X(x)Y(y)$.
By substituting this it the problem we get the following problems:
$$\left.\begin{matrix}
X''+\lambda X=0, 0<x<a\\
X'(0)=X'(a)=0
\end{matrix}\right\}(1)$$
and
$$\left.\begin{matrix}
Y''-\lambda Y=0, 0<y<b\\
Y'(b)=0
\end{matrix}\right\}(2)$$
$$u(x,0)=X(x)Y(0)=x$$
Solving the problem $(1)$, the eigenvalues are:
- $\lambda =0$, with the corresponding eigenfunction $X_0(x)=1$
- $\lambda =(\frac{n \pi }{a})^2$, with the corresponding eigenfunctions $X_n(x)=\cos{(\frac{n \pi x}{a})}$
So
$$X_n(x)=\left\{\begin{matrix}
1 & ,n=0\\
\cos{(\frac{n \pi x}{a})} & , n=1,2,3, \dots
\end{matrix}\right.$$
By solving the problem $(2)$ we get:
$$Y_n(x)=\left\{\begin{matrix}
A_0 y +B_0 & ,n=0\\
A_n \sinh{(\frac{n \pi y}{a})}+B_n \cosh{(\frac{n \pi y}{a})} & , n=1,2,3, \dots
\end{matrix}\right.$$
Then $$Y_n '(x)=\left\{\begin{matrix}
A_0 & ,n=0\\
\frac{n \pi}{a}A_n \cosh{(\frac{n \pi y}{a})}+\frac{n \pi }{a} B_n \sinh{(\frac{n \pi y}{a})} & , n=1,2,3, \dots
\end{matrix}\right.$$
$Y'(b)=0 \Rightarrow$
$$A_0 \text{ and } \frac{n \pi}{a}A_n \cosh{(\frac{n \pi b}{a})}+\frac{n \pi }{a} B_n \sinh{(\frac{n \pi b}{a})}=0 \Rightarrow A_n=B_n \tanh{(\frac{n \pi b}{a})}$$
So $$Y_n(x)=\left\{\begin{matrix}
B_0 & ,n=0\\
B_n \tanh{(\frac{n \pi b}{a})} \sinh{(\frac{n \pi y}{a})}+B_n \cosh{(\frac{n \pi y}{a})} & , n=1,2,3, \dots
\end{matrix}\right.$$
So the solution solution of the initial problem is of the form:
$$u(x,y)=B_0+ \sum_{n=1}^{\infty}{B_n[ \tanh{(\frac{n \pi b}{a})} \sinh{(\frac{n \pi y}{a})}+ \cosh{(\frac{n \pi y}{a})}] \cos{(\frac{n \pi x}{a})}}$$
$$u(x,0)=x \Rightarrow B_0+ \sum_{n=1}^{\infty}{B_n \cos{(\frac{n \pi x}{a})}}=x$$
To find the coefficients $B_0$ and $B_n$, can I use the expansion of $x$ to the eigenfunctions of the problem, although $x$ does not satisfy the boundary conditions of the problem? (Wondering)