- #1
OhMyMarkov
- 83
- 0
Hello everyone!
I'm asked to find a set that is bounded and that has exactly two limit points, now this is how I am thinking.
Consider the set $A_n = [0,\frac{1}{n}) \cup(2-\frac{1}{n},2]$, if $A_1 = [0,1)\cup(1,2]$, $A_2=[0,1/2)\cup (3/2,2]$. If I let $n$ grow indefinitely, I will have only two limit points, 0 and 2, right?
Any help is appreciated!
I'm asked to find a set that is bounded and that has exactly two limit points, now this is how I am thinking.
Consider the set $A_n = [0,\frac{1}{n}) \cup(2-\frac{1}{n},2]$, if $A_1 = [0,1)\cup(1,2]$, $A_2=[0,1/2)\cup (3/2,2]$. If I let $n$ grow indefinitely, I will have only two limit points, 0 and 2, right?
Any help is appreciated!