Boundedness of Oscillatory Integrals

  • POTW
  • Thread starter Euge
  • Start date
In summary, boundedness in oscillatory integrals refers to the property of an integral to have a finite value or limit. It is a necessary condition for the convergence of oscillatory integrals and can be proven using techniques such as bounds on the integrand and the Cauchy-Schwarz inequality. The concept of boundedness is significant in the study of oscillatory integrals as it allows for their evaluation and understanding of their behavior. However, boundedness cannot be guaranteed for all oscillatory integrals due to potential unbounded oscillations or singularities.
  • #1
Euge
Gold Member
MHB
POTW Director
2,073
242
Let ##\phi \in C^\infty(\mathbb{R}^d \times \mathbb{R}^d)## and ##h\in C_0^\infty(\mathbb{R}^d \times \mathbb{R}^d)## such that matrix ##(\frac{\partial^2 \phi}{\partial x_j \, \partial y_k}(x,y))## is invertible on the support of ##h##. Show that for ##1 \le p \le 2##, there is a constant ##C = C_p > 0## such that for every ##\lambda > 0## and ##f\in L^p(\mathbb{R}^d)##, $$\left\|\int_{\mathbb{R}^d} e^{i\lambda\phi(x,y)}h(x,y)f(y)\, dy\right\|_{L_x^{q}(\mathbb{R}^d)} \le C\lambda^{-d/q}\|f\|_{L^p(\mathbb{R}^d)}$$ where ##q## is the conjugate exponent of ##p##.
 
  • Like
Likes wrobel and topsquark
Physics news on Phys.org
  • #2
Hormander's generalization of the Hausdorff-Young inequality
a tough task :)
 
Last edited:
  • #3
Let $$(T_\lambda f)(x) = \int_{\mathbb{R}^d} e^{i\lambda \phi(x,y)}\, h(x,y)f(y)\, dy$$ If ##f\in L^1(\mathbb{R}^d)##, the triangle inequality gives an immediate estimate ##\|T_\lambda f\|_{L^\infty(\mathbb{R}^d)} \lesssim\|f\|_{L^1(\mathbb{R}^d)}##. Now suppose ##f\in L^2(\mathbb{R}^d)##. By Fubini's theorem we can write $$\|T_\lambda f\|_{L^2(\mathbb{R}^d)}^2 = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} e^{i\lambda[\phi(x,y) - \phi(x,z)]} h(x,y)\overline{h(x,z)}\, dx\right)\, f(y)\overline{f(z)}\, dy\, dz$$ For convenience, let the inner integral in paratheses be ##K(y,z;\lambda)##. Since the matrix ##D_xD_y\phi## is invertible on the support of ##h##, using a partition of unity if necessary we may assume ##D_x[\phi(x,y) - \phi(x,z)] \ge M|y - z|## on the supprt of ##h## for some ##M > 0##. Then by method of stationary phase, ##|K(y,z;\lambda)| \lesssim (1 + \lambda|y - z|)^{-N}## for every positive integer ##N##. If ##N > n##, ##\|(1 + \lambda |y|)^{-N}\|_{L^1(\mathbb{R}^d)} \simeq \lambda^{n-N}##; the Young and Schwarz inequalities produce estimates $$\|T_\lambda f\|_{L^2(\mathbb{R}^d)}^2 \lesssim \|(1 + \lambda|y|)^{-N}\|_{L^1(\mathbb{R}^d)} \|f\|_{L^2(\mathbb{R}^d)}^2 \lesssim \lambda^{n-N} \|f\|_{L^2(\mathbb{R}^d)}^2$$ Setting ##N = 2n## and taking square roots, we obtain ##\|T_\lambda f\|_{L^2(\mathbb{R}^d)} \lesssim \lambda^{-n/2}\|f\|_{L^2(\mathbb{R}^d)}##. By Riesz interpolation of the linear operator ##T_\lambda## the result follows.
 
  • Like
Likes topsquark

Similar threads

Replies
4
Views
1K
Replies
3
Views
1K
Replies
1
Views
1K
Replies
2
Views
793
Replies
1
Views
1K
Replies
3
Views
1K
Replies
11
Views
749
Replies
3
Views
1K
Replies
1
Views
1K
Back
Top