- #1
javi438
- 15
- 0
Homework Statement
A function is decreasing if f(x[tex]_{1}[/tex]) > f(x[tex]_{2}[/tex]) whenever x[tex]_{1}[/tex] < x[tex]_{2}[/tex], and x[tex]_{1}[/tex], x[tex]_{2}[/tex] [tex]\epsilon[/tex] [tex]\Re[/tex]
a) Show that the set {f(x) : x < a} is bounded below
b) Prove that lim (as x goes to a) f(x) = glb{f(x) : x < a}
(hint: show that for any [tex]\epsilon[/tex] > 0, there exists [tex]\delta[/tex] > 0 such that f(a - [tex]\delta[/tex]) < c + [tex]\epsilon[/tex]
i have no idea where to starttttt ><
please helpp meeee