- #1
ian2012
- 80
- 0
I have a basic question that I have overlooked in the past, given that you have
<psi2|A = lamda2<psi2|, where <| is a bra and lamda2 is the eigenvalue. If you were to multiply the equation by |psi1>, why do you get <psi2|A|psi1> = lamda2<psi2|psi1> and not |psi1><psi2|A = lamda2|psi1><psi2| ? Wouldn't the former defeat the purpose of operator algebra?
<psi2|A = lamda2<psi2|, where <| is a bra and lamda2 is the eigenvalue. If you were to multiply the equation by |psi1>, why do you get <psi2|A|psi1> = lamda2<psi2|psi1> and not |psi1><psi2|A = lamda2|psi1><psi2| ? Wouldn't the former defeat the purpose of operator algebra?