- #1
ThereIam
- 65
- 0
I can tell this is simple, but I'm just not seeing it: (pages 146-147)
Radial equation = d[itex]^{2}[/itex]u/dp[itex]^{2}[/itex] = [1 - p[itex]_{0}[/itex]/p + l(l+1)/p[itex]^{2}[/itex]]u
Later... (having stripped off the asymptotic p[itex]^{l}[/itex]e[itex]^{-p}[/itex] parts)
d[itex]^{2}[/itex]u/dp[itex]^{2}[/itex] = p[itex]^{l}[/itex]e[itex]^{-p}[/itex]{[-2l-2+p+l(l+1)/p]v + 2(l+1-p)dv/dp + p*d[itex]^{2}[/itex]v/dp[itex]^{2}[/itex]}
And he says, "In terms of v(p), then, the radial equation [as I put it above] reads
p*d[itex]^{2}[/itex]v/dp[itex]^{2}[/itex] +2(l+1-p)dv/dp + [p[itex]_{0}[/itex]-2(l+1)]v=0.
Wot?
On a loosely related note, should I bother to memorize these sorts of derivations? And at what point in my physics career ought I be proficient at busting out the power series method to solve differential equations?
Radial equation = d[itex]^{2}[/itex]u/dp[itex]^{2}[/itex] = [1 - p[itex]_{0}[/itex]/p + l(l+1)/p[itex]^{2}[/itex]]u
Later... (having stripped off the asymptotic p[itex]^{l}[/itex]e[itex]^{-p}[/itex] parts)
d[itex]^{2}[/itex]u/dp[itex]^{2}[/itex] = p[itex]^{l}[/itex]e[itex]^{-p}[/itex]{[-2l-2+p+l(l+1)/p]v + 2(l+1-p)dv/dp + p*d[itex]^{2}[/itex]v/dp[itex]^{2}[/itex]}
And he says, "In terms of v(p), then, the radial equation [as I put it above] reads
p*d[itex]^{2}[/itex]v/dp[itex]^{2}[/itex] +2(l+1-p)dv/dp + [p[itex]_{0}[/itex]-2(l+1)]v=0.
Wot?
On a loosely related note, should I bother to memorize these sorts of derivations? And at what point in my physics career ought I be proficient at busting out the power series method to solve differential equations?
Last edited: