- #1
Final
- 25
- 0
Hi...
A group G is proken to a subgroup H. Let [tex] t_{\alpha} [/tex] the generator of G and
[tex]t_i[/tex] the generator of H. The t_i form a subalgebra. Take the x_a to be the other indipendent generator of G.
Why any finite element of G may be expressed in the form [tex]g=exp[i\xi_ax_a]exp[i\theta_i t_i][/tex] even if [tex][t_i,x_a]\neq0[/tex]?
A group G is proken to a subgroup H. Let [tex] t_{\alpha} [/tex] the generator of G and
[tex]t_i[/tex] the generator of H. The t_i form a subalgebra. Take the x_a to be the other indipendent generator of G.
Why any finite element of G may be expressed in the form [tex]g=exp[i\xi_ax_a]exp[i\theta_i t_i][/tex] even if [tex][t_i,x_a]\neq0[/tex]?