- #1
Tim667
- 12
- 0
- TL;DR Summary
- How does one calculate the correlation function?
So the Langevin equation of Brownian motion is a stochastic differential equation defined as
$$m {d \textbf{v} \over{dt} } = - \lambda \textbf{v} + \eta(t)$$
where the noise function eta has correlation function $$\langle \eta_i(t) \eta_j(t') \rangle=2 \lambda k_B T \delta_{ij} \delta(t - t')$$.
I have two questions. How does one actually calculate a correlation function and where exactly do the constants (with temperature, the Boltzmann constants etc) proceeding the delta functions originate here? I understand that the delta functions ensure that there is no correlation at different times etc, but I don't get where the rest comes from.
Thanks
$$m {d \textbf{v} \over{dt} } = - \lambda \textbf{v} + \eta(t)$$
where the noise function eta has correlation function $$\langle \eta_i(t) \eta_j(t') \rangle=2 \lambda k_B T \delta_{ij} \delta(t - t')$$.
I have two questions. How does one actually calculate a correlation function and where exactly do the constants (with temperature, the Boltzmann constants etc) proceeding the delta functions originate here? I understand that the delta functions ensure that there is no correlation at different times etc, but I don't get where the rest comes from.
Thanks