Buoyancy and Weight of the Fluid Displaced

In summary, a 500g mass submerged in water displaces 57.6mL of water and experiences a force of gravity of 4.35N. To determine the buoyant force, the equation ΣFy = Fb + Fscale – Fg = 0 is used, which results in a buoyant force of 3.8N. The weight of the water displaced can be calculated using the formula ρ = m/v, which yields a value of 0.0576kg. The force of gravity on the mass is actually 4.9N, giving a normal force of 0.55N and a buoyant force of 0.55N.
  • #1
theeringirl
1
0

Homework Statement


A 500g mass is submerged in water, displacing 57.6mL of water. The force of gravity on the weight when submerged is measured to be 4.35N. The actual weight should be 4.9N. (remember that the density of water is 1000kg/m3)
(the weight is being held in the water by a spring scale)

(a). Using a "sum of the forces in the y direction" equation, determine the measure of the buoyant force.
(b). Using the volume, calculate the weight of the water displaced.


Homework Equations


(a). ΣFy = Fb + Fscale – Fg = 0
(b). ρ = m/v ... m = ρv


The Attempt at a Solution


(a). ΣFy = Fb + Fscale – Fg = 0
Fb = Fg apparent - Fscale
Fb= 4.35N – 0.55N
Fb = 3.8N
(b). ρ = m/v
m = ρv
m = (1000kg/m3)( 5.76x10-5 m3)
m = 0.0576kg
Fg = mg
Fg = (0.0576kg)(9.80m/s2)
Fg = 0.564N
 
Physics news on Phys.org
  • #2
In your problem the scales show that the mass "weighs" 4.35N, this is the measure of the normal force experienced by the mass.

The normal force is given by:

[tex]
$F_N=F_g-F_b=4.9-F_b=0.55N\Rightarrow F_b=0.55N$.
[/tex]

The second part seems correct.
 

FAQ: Buoyancy and Weight of the Fluid Displaced

What is buoyancy?

Buoyancy is the upward force exerted by a fluid on an object that is partially or fully submerged in the fluid. It is a result of the pressure difference between the top and bottom of the object.

How is buoyancy calculated?

Buoyancy is calculated using Archimedes' principle, which states that the buoyant force on an object is equal to the weight of the fluid it displaces. This can be expressed as: B = ρVg, where B is the buoyant force, ρ is the density of the fluid, V is the volume of the object submerged, and g is the acceleration due to gravity.

What is the relationship between weight of the fluid displaced and buoyancy?

The weight of the fluid displaced is equal to the buoyant force exerted on an object. This means that the more fluid an object displaces, the greater the buoyant force acting on it will be.

How does the density of the fluid affect buoyancy?

The density of the fluid has a direct effect on the buoyant force. Objects that are less dense than the fluid will experience a greater buoyant force, while objects that are more dense will experience a smaller buoyant force.

What is the difference between buoyancy and weight?

Buoyancy is the upward force exerted by a fluid on an object, while weight is the downward force due to gravity on an object. Buoyancy is dependent on the density of the fluid and the volume of the object, while weight is dependent on the mass of the object.

Back
Top