MHB Calc Help: Find b to Divide Region into 2 Equal Areas

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    parts
AI Thread Summary
To find the value of b that divides the area between the curves y = 16x^2 and y = 25 into two equal parts, the area A can be expressed as A = 2∫₀²⁵ x dy. By solving for x from y = 16x², it is determined that A = (1/2)∫₀²⁵ y^(1/2) dy. The goal is to find b such that ∫₀ᵇ y^(1/2) dy equals ∫ᵇ²⁵ y^(1/2) dy, leading to the equation b^(3/2) = 125/2. Ultimately, the solution for b is b = 25/√[3]{4}.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calc help! One try left!?


Find the number b such that the line y = b divides the region bounded by the curves y = 16x^2 and y = 25 into two regions with equal area.

I have posted a link there to this thread so the OP can see my work.
 
Mathematics news on Phys.org
Hello eyeheartglitter,

The given bounded area $A$ may be expressed as:

$$A=2\int_0^{25} x\,dy$$

From $$y=16x^2$$ we find (by taking the positive root):

$$x=\frac{y^{\frac{1}{2}}}{4}$$

Hence:

$$A=\frac{1}{2}\int_0^{25} y^{\frac{1}{2}}\,dy$$

Now, we wish to find some number $b$ such that:

$$\frac{1}{2}\int_0^{b} y^{\frac{1}{2}}\,dy=\frac{1}{2}\int_b^{25} y^{\frac{1}{2}}\,dy$$

Multiply through by 2:

$$\int_0^{b} y^{\frac{1}{2}}\,dy=\int_b^{25} y^{\frac{1}{2}}\,dy$$

Apply the FTOC:

$$\frac{2}{3}\left[y^{\frac{3}{2}} \right]_0^b=\frac{2}{3}\left[y^{\frac{3}{2}} \right]_b^{25}$$

Multiply through by $$\frac{3}{2}$$:

$$\left[y^{\frac{3}{2}} \right]_0^b=\left[y^{\frac{3}{2}} \right]_b^{25}$$

$$b^{\frac{3}{2}}=5^3-b^{\frac{3}{2}}$$

$$2b^{\frac{3}{2}}=5^3$$

$$b^{\frac{3}{2}}=\frac{5^3}{2}$$

$$b=\frac{25}{\sqrt[3]{4}}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
2
Views
1K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
1
Views
3K
Replies
10
Views
2K
Replies
1
Views
7K
Back
Top