Calc Ionisation Const of Ethanoic Acid in 0.1M Soln

  • Thread starter josephcollins
  • Start date
  • Tags
    Constant
In summary, the dissociation constant for an acid is the ratio of the product of final concentration of hydrogen ions and the conjugate base over the remaining concentration of the acid after equilibrium is reached. Using this information, the pH of a 0.1M solution of ethanoic acid can be calculated as 2.87. The ionisation constant of the acid can also be calculated by using the pH of 3.4 for a 0.01 M ethanoic acid solution, resulting in a value of 10^-4.8.
  • #1
josephcollins
59
0
Hi peeps, could someone help me out:

Define the term dissociation constant of an aid. The value for ethanoic acid is 1.8*10^-5 moldm-3. Calculate the pH of a 0.1M solution of ethanoic acid.

The pH of a 0.01 M ethanoic acid solution is 3.4. What is the ionisation constant of the acid at this temperature?
 
Chemistry news on Phys.org
  • #2
My first LATEX experience, sorry for rookie post

Hello, you are doing great help as I am also preparing for PhD proficiency exam on Chemistry :smile:

I will not consult any books about the definition and use mine instead. Dissociation constant for an acid is the ratio of the product of final concentration of hydrogen ions and the conjugate base over the remaining (if the acid is sufficiently weak, practically initial then) concentration of the acid solution after the equilibrium is reached.

Let me solve the problem with this information:

[tex]CH_{3}COOH\rightleftharpoons H^+ + CH_{3}COO^-[/tex]

If you write [tex](0,1-x)[/tex], [tex]{x}[/tex], and [tex]{x}[/tex], respectively, right below acetic acid and hydrogen, and acetate ions, then you can calculate the equilibrium constant (sorry for Latex-based inability):

[tex]K_d=\frac{x^2}{(0,1-x)}[/tex]. Here, you've stated that [tex]K_d[/tex] is [tex]1,8.10^{-5}[/tex], the ratio between the initial concentration and this constant makes ten-thousandfold difference; this can easily be tolerated and the [tex]x[/tex] in [tex](0,1-x)[/tex] may be safely omitted.

So we have this finally:

[tex]1,8.10^{-5}=\frac{x^2}{(0,1)}[/tex], and we find [tex]x[/tex] as [tex]0,0013[/tex], whose pH is ca. [tex]2,87[/tex].

The pH of a 0.01 M ethanoic acid solution is 3.4. What is the ionisation constant of the acid at this temperature?

About your second question, we'll need to decode the data backwards. [tex]pH{3,4} [/tex] is equal to [tex]10^{-3,4}[/tex], meaning that the conjugate base, acetate, has the same value. The ratio between [tex]\frac{x^2}{0,01-x}[/tex] gives the exact dissociation constant. However, [tex]x^2[/tex] gives [tex]10^{-6,8}[/tex], and the difference between this and the initial concentration reaches as much as ca. 158.500; so we may omit the [tex]x[/tex] in [tex](0,01-x)[/tex] for the sake of simplicity.

When we omit the it, we obtain [tex]10^{-4,8}[/tex], that is the sufficiently close dissociation constant of acetic acid to the real value.

Regards, chem_tr
 
Last edited:
  • #3


The dissociation constant, also known as the ionization constant, of an acid is a measure of its strength. It is the equilibrium constant for the dissociation reaction of an acid in water, where the acid donates a proton (H+) to water to form its conjugate base.

In this case, the dissociation constant of ethanoic acid (also known as acetic acid) is 1.8*10^-5 moldm-3. This means that at equilibrium, only a small fraction of the acid molecules have dissociated into ions in the solution.

To calculate the pH of a 0.1M solution of ethanoic acid, we can use the dissociation constant and the equation for the ionization of a weak acid: Ka = [H+][A-]/[HA], where Ka is the dissociation constant, [H+] is the concentration of hydrogen ions, [A-] is the concentration of the conjugate base, and [HA] is the concentration of the acid.

Rearranging the equation, we get [H+] = √(Ka*[HA]). Plugging in the values, we get [H+] = √(1.8*10^-5 * 0.1) = 1.34*10^-3 moldm-3. Taking the negative logarithm of this value, we get the pH of the solution to be 2.87.

Now, to find the ionization constant at a pH of 3.4, we can use the Henderson-Hasselbalch equation: pH = pKa + log([A-]/[HA]). Rearranging the equation, we get pKa = pH - log([A-]/[HA]). Plugging in the values, we get pKa = 3.4 - log(0.01/0.1) = 3.4 + 1 = 4.4.

Therefore, the ionization constant at a pH of 3.4 is 10^-4.4 = 3.98*10^-5 moldm-3. This value is close to the given dissociation constant of 1.8*10^-5 moldm-3, indicating that the acid is mostly dissociated at this pH.

I hope this helps! Let me know if you have any other questions.
 

FAQ: Calc Ionisation Const of Ethanoic Acid in 0.1M Soln

What is the significance of calculating the ionization constant of ethanoic acid in a 0.1M solution?

The ionization constant, also known as the dissociation constant, is a measure of the strength of an acid in a solution. In this case, it specifically refers to the strength of ethanoic acid, also known as acetic acid. Knowing the ionization constant can help determine the acid's behavior in different environments and its ability to donate a proton in a chemical reaction.

How is the ionization constant of ethanoic acid determined in a 0.1M solution?

The ionization constant can be determined experimentally by measuring the concentration of the acid and its conjugate base in a 0.1M solution and using the equilibrium expression for the dissociation reaction. It can also be calculated using mathematical equations and data from acid-base titrations.

What factors can affect the value of the ionization constant of ethanoic acid in a 0.1M solution?

The value of the ionization constant can be influenced by factors such as temperature, concentration, and the presence of other substances in the solution. It can also vary depending on the strength of the acid and the solvent used.

How does the ionization constant of ethanoic acid in a 0.1M solution compare to other acids?

The ionization constant of ethanoic acid is relatively low compared to other strong acids, such as hydrochloric acid or sulfuric acid. This is because ethanoic acid is a weak acid, meaning it does not fully dissociate in solution. The lower the ionization constant, the weaker the acid.

What are some practical applications of knowing the ionization constant of ethanoic acid in a 0.1M solution?

Knowing the ionization constant of ethanoic acid can be useful in various industries, such as food and beverage, pharmaceuticals, and agriculture. It can also be used in chemical analysis and in the production of other chemicals. Additionally, understanding the behavior of weak acids in solution is crucial in many biological and environmental processes.

Back
Top