- #1
Petrus
- 702
- 0
Calculate the volumes of the rotation bodies which arises when the area D in the xy-plane bounded by x-axis and curve \(\displaystyle 7x-x^2\)may rotate around x- respective y-axes.
I will calculate \(\displaystyle V_x\) and \(\displaystyle V_y\) I start to get crit point \(\displaystyle x_1=0\) and \(\displaystyle x_2=7\)
rotate on y-axe:
\(\displaystyle 2\pi\int_a^bf(x)dx\)
so we get \(\displaystyle 2\pi[\frac{7x^2}{2}-\frac{x^3}{3}]_0^7\) \(\displaystyle V_y=\frac{2\pi*343}{6}\)
rotate on x axe:
\(\displaystyle \pi\int_a^bf(x)^2dx\)
so we start with:\(\displaystyle (7x-x^2)^2=49x^2-14x^3+x^4\) so we get \(\displaystyle [\frac{49x^3}{3}-\frac{14x^4}{4}+\frac{x^5}{5}]_0^7\) that means \(\displaystyle V_x=\frac{16087\pi}{30}\) What I am doing wrong?
(Sorry for bad english.)
I will calculate \(\displaystyle V_x\) and \(\displaystyle V_y\) I start to get crit point \(\displaystyle x_1=0\) and \(\displaystyle x_2=7\)
rotate on y-axe:
\(\displaystyle 2\pi\int_a^bf(x)dx\)
so we get \(\displaystyle 2\pi[\frac{7x^2}{2}-\frac{x^3}{3}]_0^7\) \(\displaystyle V_y=\frac{2\pi*343}{6}\)
rotate on x axe:
\(\displaystyle \pi\int_a^bf(x)^2dx\)
so we start with:\(\displaystyle (7x-x^2)^2=49x^2-14x^3+x^4\) so we get \(\displaystyle [\frac{49x^3}{3}-\frac{14x^4}{4}+\frac{x^5}{5}]_0^7\) that means \(\displaystyle V_x=\frac{16087\pi}{30}\) What I am doing wrong?
(Sorry for bad english.)