- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I am looking at the follwong exercise:
Notice that the multiplicative group $\mathbb{Z}^{*}_{10} \times \mathbb{Z}^{*}_{22}$ is cyclic and consider its generator $([a]_{10},_{22})$ with the lowest possible positive integers $a$ and $b$. Let $([a]_{10},_{22})^{33}=([c]_{10},[d]_{22}), 1 \leq c \leq 10, 1<d<22$.Which is the value of $11c-5d$ ?
$$\mathbb{Z}^{*}_{10}= \{ 1,3,7,9\}$$
$$[3]^1=[3],[3]^2=[9],[3]^3=[27]=[7], [3]^4=[3]^3 \cdot [3]=[7 \cdot 3]=[1] \checkmark $$
$$\text{So, } a=3$$
$$\mathbb{Z}^{*}_{22}= \{ 1,3,5,7,9,13,15,17,19,21\}$$
$$[3]^1=[3], [3]^2=[9], [3]^3=[27]=[6] \times$$
$$[5]^1=[5], [5]^2=[25]=[3] , [5]^3=[5]^2 \cdot [5]=[15], [5]^4=[15 \cdot 5]=[75]=[9] , [5]^5=[9 \cdot 5]=[45]=[1] , [5]^6=[5] \times $$
$$[7]^1=[7], [7]^2=[49]=[5], [7]^3=[5 \cdot 7]=[35]=[13], [7]^4=[13 \cdot 7]=[91]=[3], [7]^5=[3 \cdot 7]=[21], [7]^5=[21 \cdot 7]=[147]=[15], [7]^6=[15 \cdot 7]=[17], [7]^7=[17 \cdot 7]=[9], [7]^8=[9 \cdot 7]=[19], [7]^9=[19 \cdot 7]=[1] \checkmark $$
$$b=7$$
$$([3]_{10},[7]_{22})^{33}=([c]_{10}, [d]_{22}) \Rightarrow ([c]_{10}, [d]_{22})=([3^{33}]_{10},[7^{33}]_{22})$$
$(3,10)=1, \phi(10)=\phi(2 \cdot 5)=10(1-\frac{1}{2})(1-\frac{1}{5})=10 \cdot \frac{1}{2} \cdot \frac{4}{5}=4$
$$\text{ So from Euler's Theorem: } 3^4 \equiv 1 \pmod{10}$$
$$3^{33} \equiv 3^{4 \cdot 8+1} \equiv (3^4)^8 \cdot 3 \equiv 3 \pmod{10}$$
$(7,22)=1 , \phi(22)=\phi(2 \cdot 11)=22(1-\frac{1}{2})(1-\frac{1}{11})=10$
$\text{ So,from Euler's Theorem: } 7^{10} \equiv 1 \pmod{ 22 }$
$$7^{33} \equiv 7^{3 \cdot 10+3} \equiv (7^{10})^3 \cdot 7^3 \equiv 13 \pmod{22}$$
$$ \text{ We conclude that: } [c]_{10}=[3]_{10} \text{ and } [d]_{22}=[13]_{22} \Rightarrow c=3+10k, k \in \mathbb{Z} \text{ and } d=13+22l, l \in \mathbb{Z} \Rightarrow c=3, d=13$$
Therefore, $11c-5d=11 \cdot 3-5 \cdot 13=33-65=-32$
Could you tell me if it is right? (Thinking)(Thinking)
I am looking at the follwong exercise:
Notice that the multiplicative group $\mathbb{Z}^{*}_{10} \times \mathbb{Z}^{*}_{22}$ is cyclic and consider its generator $([a]_{10},_{22})$ with the lowest possible positive integers $a$ and $b$. Let $([a]_{10},_{22})^{33}=([c]_{10},[d]_{22}), 1 \leq c \leq 10, 1<d<22$.Which is the value of $11c-5d$ ?
$$\mathbb{Z}^{*}_{10}= \{ 1,3,7,9\}$$
$$[3]^1=[3],[3]^2=[9],[3]^3=[27]=[7], [3]^4=[3]^3 \cdot [3]=[7 \cdot 3]=[1] \checkmark $$
$$\text{So, } a=3$$
$$\mathbb{Z}^{*}_{22}= \{ 1,3,5,7,9,13,15,17,19,21\}$$
$$[3]^1=[3], [3]^2=[9], [3]^3=[27]=[6] \times$$
$$[5]^1=[5], [5]^2=[25]=[3] , [5]^3=[5]^2 \cdot [5]=[15], [5]^4=[15 \cdot 5]=[75]=[9] , [5]^5=[9 \cdot 5]=[45]=[1] , [5]^6=[5] \times $$
$$[7]^1=[7], [7]^2=[49]=[5], [7]^3=[5 \cdot 7]=[35]=[13], [7]^4=[13 \cdot 7]=[91]=[3], [7]^5=[3 \cdot 7]=[21], [7]^5=[21 \cdot 7]=[147]=[15], [7]^6=[15 \cdot 7]=[17], [7]^7=[17 \cdot 7]=[9], [7]^8=[9 \cdot 7]=[19], [7]^9=[19 \cdot 7]=[1] \checkmark $$
$$b=7$$
$$([3]_{10},[7]_{22})^{33}=([c]_{10}, [d]_{22}) \Rightarrow ([c]_{10}, [d]_{22})=([3^{33}]_{10},[7^{33}]_{22})$$
$(3,10)=1, \phi(10)=\phi(2 \cdot 5)=10(1-\frac{1}{2})(1-\frac{1}{5})=10 \cdot \frac{1}{2} \cdot \frac{4}{5}=4$
$$\text{ So from Euler's Theorem: } 3^4 \equiv 1 \pmod{10}$$
$$3^{33} \equiv 3^{4 \cdot 8+1} \equiv (3^4)^8 \cdot 3 \equiv 3 \pmod{10}$$
$(7,22)=1 , \phi(22)=\phi(2 \cdot 11)=22(1-\frac{1}{2})(1-\frac{1}{11})=10$
$\text{ So,from Euler's Theorem: } 7^{10} \equiv 1 \pmod{ 22 }$
$$7^{33} \equiv 7^{3 \cdot 10+3} \equiv (7^{10})^3 \cdot 7^3 \equiv 13 \pmod{22}$$
$$ \text{ We conclude that: } [c]_{10}=[3]_{10} \text{ and } [d]_{22}=[13]_{22} \Rightarrow c=3+10k, k \in \mathbb{Z} \text{ and } d=13+22l, l \in \mathbb{Z} \Rightarrow c=3, d=13$$
Therefore, $11c-5d=11 \cdot 3-5 \cdot 13=33-65=-32$
Could you tell me if it is right? (Thinking)(Thinking)