- #1
Lotto
- 246
- 16
- Homework Statement
- On a flat surface of a glass hemisphere with a radius of ##r = 4.0 \,\mathrm {cm}## with a refractive index ##n= 1.50##, a circular bundle of parallel beams with a diameter of ##2a = 6.0 \,\mathrm{cm}## falls parallel to the optical axis. What will be the radius ##R## of the illuminated circle on a screen, which is positioned perpendicular to the optical axis at a distance of ##L = 8.0\,\mathrm{ cm}## from the plane area of the hemisphere? A picture below.
- Relevant Equations
- ##f=\frac{n_1 n_2 R_1 R_2}{(n_2-n_1)[(n_2-n_1)d+n_2(R_2-R_1)]}##
The picture is here. The radius should be ##R=2.94\,\mathrm {cm}##.
In the original solution, it is solved by using a critical angle ϵm. The b is the maximum distance at which a beam can refract. I understand this solution and an image of it is here:
But I wanted to calculate it by knowing that the hemosphere is a thick lens. I calculated its focal lenght to be ##f=8.0\,\mathrm {cm}## and that its one principal axis touches the top of the lens. So the focus F′ should be ##4\,\mathrm{ cm}## behind the screen.
The light beams are parallel to the optical axis, so they should refract into the focus F′, but according to the picture, that is not true. I tried to calculate the radius ##R## by using that focal lenght and my value is wrong.
I understand that not all bems refract after passing through the lens, but why cannot I use the focal lenght and solve the problem by using thick lens knowledge? Or where are my thoughts wrong?
In the original solution, it is solved by using a critical angle ϵm. The b is the maximum distance at which a beam can refract. I understand this solution and an image of it is here:
But I wanted to calculate it by knowing that the hemosphere is a thick lens. I calculated its focal lenght to be ##f=8.0\,\mathrm {cm}## and that its one principal axis touches the top of the lens. So the focus F′ should be ##4\,\mathrm{ cm}## behind the screen.
The light beams are parallel to the optical axis, so they should refract into the focus F′, but according to the picture, that is not true. I tried to calculate the radius ##R## by using that focal lenght and my value is wrong.
I understand that not all bems refract after passing through the lens, but why cannot I use the focal lenght and solve the problem by using thick lens knowledge? Or where are my thoughts wrong?