- #1
juantheron
- 247
- 1
Calculation of : $\displaystyle \int_{0}^{1991}\{ \frac{2x+5}{x+1}\}[ x]dx$, where $[ x]$ and $\{ x \}$ denote the integral and fractional part of $x$
My Trial :: $\displaystyle \int_{0}^{1991}\left\{\frac{(2x+2)+3}{x+1}\right\}\cdot [x]dx$
$\displaystyle \int_{0}^{1991}\left\{2+\frac{3}{x+1}\right\}[x]dx = \int_{0}^{1991}\left\{\frac{3}{x+1}\right\}[x]dx$
Using the formula $\left\{z+x\right\} = \left\{x\right\}$,where $z$ is an Integer
Now How can i slve after that
Help me
Thanks
My Trial :: $\displaystyle \int_{0}^{1991}\left\{\frac{(2x+2)+3}{x+1}\right\}\cdot [x]dx$
$\displaystyle \int_{0}^{1991}\left\{2+\frac{3}{x+1}\right\}[x]dx = \int_{0}^{1991}\left\{\frac{3}{x+1}\right\}[x]dx$
Using the formula $\left\{z+x\right\} = \left\{x\right\}$,where $z$ is an Integer
Now How can i slve after that
Help me
Thanks