- #1
Krismein
- 12
- 1
Summary:: Calculate the deformation on a rod/axle/pipe due to a distributed load.
I’m manually trying to calculate the deformation on a rod/axle/pipe due to a distributed load. The rod has an outer diameter of 62mm and an inner diameter of 50, is 170mm long, made from a material with an E-module=200GPa and Poisson's ratio = 0,3. The load is distributed along the whole length of the rod and is 491 N/mm. I have calculated the second moment of inertia I to be 418536mm^4, and I’m having no luck finding a formula for rod deformation/bending.
I have tried using this formula:
But i don't think it applies for rods, as my answer is low.
I’m manually trying to calculate the deformation on a rod/axle/pipe due to a distributed load. The rod has an outer diameter of 62mm and an inner diameter of 50, is 170mm long, made from a material with an E-module=200GPa and Poisson's ratio = 0,3. The load is distributed along the whole length of the rod and is 491 N/mm. I have calculated the second moment of inertia I to be 418536mm^4, and I’m having no luck finding a formula for rod deformation/bending.
I have tried using this formula:
But i don't think it applies for rods, as my answer is low.