- #1
Lambda96
- 202
- 71
- Homework Statement
- Calculate ##\vec{B}(t,\vec{x})##
- Relevant Equations
- none
Hi
I'm not sure if I calculated the magnetic field from task a) correct?
for calculatin ##\vec{B}## i used, the formular ##\vec{B}=\vec{\nabla} x \vec{A}##
$$\vec{B}=\left(\begin{array}{c} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{array}\right) \times \left(\begin{array}{c} A_0\cdot e^{-i(k_1x_1-\omega t)} \\ A_0\cdot e^{-i(k_2x_2-\omega t)} \\ A_0\cdot e^{-i(k_3x_3-\omega t)} \end{array}\right)=\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$$
Is that right?
I'm not sure if I calculated the magnetic field from task a) correct?
for calculatin ##\vec{B}## i used, the formular ##\vec{B}=\vec{\nabla} x \vec{A}##
$$\vec{B}=\left(\begin{array}{c} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{array}\right) \times \left(\begin{array}{c} A_0\cdot e^{-i(k_1x_1-\omega t)} \\ A_0\cdot e^{-i(k_2x_2-\omega t)} \\ A_0\cdot e^{-i(k_3x_3-\omega t)} \end{array}\right)=\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$$
Is that right?