- #1
dustbin
- 240
- 5
Homework Statement
Let [itex] R [/itex] be the region bounded by the lines [itex] y=1 [/itex], [itex] y=0 [/itex], [itex] xy=1 [/itex], and [itex] x=2 [/itex]. Let [itex] \vec{F} = \begin{bmatrix} x^4 & y^2-4x^3y \end{bmatrix}^T [/itex]. Calculate the outward flux of [itex] \vec{F} [/itex] over the boundary of [itex] R [/itex].
Homework Equations
Green's theorem (normal form): [itex] \int_{\partial R} F_1\,dy - F_2\,dx = \iint_R F_{1_x} + F_{2_y}\,dx\,dy [/itex].
The Attempt at a Solution
We have [itex] F_{1_x}+F_{2_y} = 4x^3+2y-4x^3 = 2y [/itex]. Then
[tex]
\begin{align*}
\iint_R 2y\,dx\,dy &= \int_0^1\int_0^x 2y\,dy\,dx + \int_1^2\int_0^{\frac{1}{x}} 2y\,dy\,dx \\
&= \int_0^1 x^2\,dx + \int_1^2 \frac{1}{x^2}\,dx \\
&= \frac{1}{3} + \frac{1}{2} = \frac{5}{6} \ .
\end{align*}
[/tex]
By Green's theorem, the flux is [itex] \frac{5}{6} [/itex].