- #1
GravityX
- 19
- 1
- Homework Statement
- Calculate the limit of ##P## when ##a_0 \rightarrow 0## and ##M,n \rightarrow \infty## with ##a=a_0n## and ##L=a_0*M##.
- Relevant Equations
- none
Hi,
I had to calculate the entropy in a task of a lattice gas and derive a formula for the pressure from it and got the following
$$P=\frac{k_b T}{a_0}\Bigl[ \ln(\frac{L}{a_0}-N(n-1)-\ln(\frac{L}{a_0}-nN) \Bigr]$$
But now I am supposed to calculate the following limit
$$\lim\limits_{a_0 \rightarrow \infty}{} \lim\limits_{M \rightarrow \infty}{} \lim\limits_{n \rightarrow \infty}{\frac{k_b T}{a_0}\Bigl[ \ln(\frac{L}{a_0}-N(n-1)-\ln(\frac{L}{a_0}-nN) \Bigr]}$$
So not the limit for ##a_0## , ##M## and ##n## but all at the same time.
Should I first calculate the limit for one, say for ##a_0## and what I got for that, the limit for ##M## or better said ##L## etc?
I had to calculate the entropy in a task of a lattice gas and derive a formula for the pressure from it and got the following
$$P=\frac{k_b T}{a_0}\Bigl[ \ln(\frac{L}{a_0}-N(n-1)-\ln(\frac{L}{a_0}-nN) \Bigr]$$
But now I am supposed to calculate the following limit
$$\lim\limits_{a_0 \rightarrow \infty}{} \lim\limits_{M \rightarrow \infty}{} \lim\limits_{n \rightarrow \infty}{\frac{k_b T}{a_0}\Bigl[ \ln(\frac{L}{a_0}-N(n-1)-\ln(\frac{L}{a_0}-nN) \Bigr]}$$
So not the limit for ##a_0## , ##M## and ##n## but all at the same time.
Should I first calculate the limit for one, say for ##a_0## and what I got for that, the limit for ##M## or better said ##L## etc?