Calculate Magnetic field

  • #1
Lambda96
200
70
Homework Statement
Calculate ##\vec{B}(t,\vec{x})##
Relevant Equations
none
Hi

I'm not sure if I calculated the magnetic field from task a) correct?

Bildschirmfoto 2024-11-16 um 12.03.26.png

for calculatin ##\vec{B}## i used, the formular ##\vec{B}=\vec{\nabla} x \vec{A}##

$$\vec{B}=\left(\begin{array}{c} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{array}\right) \times \left(\begin{array}{c} A_0\cdot e^{-i(k_1x_1-\omega t)} \\ A_0\cdot e^{-i(k_2x_2-\omega t)} \\ A_0\cdot e^{-i(k_3x_3-\omega t)} \end{array}\right)=\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$$

Is that right?
 
Physics news on Phys.org
  • #2
It looks like you misinterpreted the components of the vector potential.
 
  • Like
Likes Lambda96 and PhDeezNutz
  • #3
Thank you kuruman for your help 👍

Should the calculation look like this?

$$\vec{B}=\left(\begin{array}{c} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{array}\right) \times \left(\begin{array}{c} A_x\cdot e^{-i(k_1x_1+k_2x_2+k_3x_3-\omega t)} \\ A_y\cdot e^{-i(k_1x_1+k_2x_2+k_3x_3-\omega t)} \\ A_z\cdot e^{-i(k_1x_1+k_2x_2+k_3x_3-\omega t)} \end{array}\right)$$
 
  • #4
Much better, but it seems that you think that ##~e^{-i(k_1x_1+k_2x_2+k_3x_3-\omega t)}~## is some kind of a vector. It is not and no \cdot is needed on the right hand side.

Also, since you are given the constant vector ##\mathbf A_0## and you are using numbers as subscripts, it would be consistent to write it as $$\vec{B}=\left(\begin{array}{c} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{array}\right) \times \left(\begin{array}{c} A_{01} ~e^{-i(k_1x_1+k_2x_2+k_3x_3-\omega t)} \\ A_{02} ~e^{-i(k_1x_1+k_2x_2+k_3x_3-\omega t)} \\ A_{03} ~e^{-i(k_1x_1+k_2x_2+k_3x_3-\omega t)} \end{array}\right).$$
 
Back
Top