MHB Calculate $\overline{AB}+\overline{AC}$ of Regular Nonagon ABCDEFGHI

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Regular
Albert1
Messages
1,221
Reaction score
0
$A\,\, regular \,\,nonagon \,\,ABCDEFGHI,\,\,if \,\,\overline{AE}=1$

$find :\overline{AB}+\overline{AC}=?$
 
Last edited:
Mathematics news on Phys.org
My attempt:
View attachment 6451The irregular pentagon $ABCDE$ has a total interior angle sum of $540^{\circ}$. Therefore, $\angle EAB = \angle AED = 60^{\circ}$.

From the figure, we have ($x = \overline{AB}, \: \: \: y=\overline{AC}$):

\[y = \frac{1}{2\cos 40^{\circ}},\: \: \: x = \frac{y}{2\cos 20^{\circ}} = \frac{1}{4\cos 20^{\circ}\cos 40^{\circ}} \\\\ \\\\ x+y = \frac{2\cos 20^{\circ}+1}{4\cos 20^{\circ}\cos 40^{\circ}}=\frac{2\cos 20^{\circ}+1}{2(\cos 20^{\circ}+\cos 60^{\circ})} = 1.\]
 

Attachments

  • Nonagon.PNG
    Nonagon.PNG
    10.9 KB · Views: 115
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top