- #1
matematikuvol
- 192
- 0
Homework Statement
Pade approximation
[tex][N/D]=\frac{a_0+a_1x+...+a_Nx^N}{1+b_1x+...+b_Dx^D}[/tex]
With this approximation we approximate Maclaurin series
[tex]f(x)=\sum^{\infty}_{i=0}c_ix^i=[N/D]+O(x^{N+D+1})[/tex]
How to calculate [tex][1/1][/tex] for [tex]f(x)=1-\frac{1}{2}x+\frac{1}{3}x^2-...[/tex] ?
Homework Equations
[tex][N/D]=\frac{a_0+a_1x+...+a_Nx^N}{1+b_1x+...+b_Dx^D}[/tex]
[tex]\sum^{\infty}_{i=0}c_ix^i=[N/D]+O(x^{N+D+1})[/tex]
The Attempt at a Solution
[tex](1+b_1x)(1-\frac{1}{2}x)=a_0+a_1x[/tex]
[tex]a_0=1[/tex]
[tex]b_1-\frac{1}{2}=a_1[/tex]
How to calculate [tex]a_1,b_1[/tex]
In solution
[tex][1/1]=\frac{1+\frac{1}{6}x}{1+\frac{2}{3}x}[/tex]