- #1
Kosta1234
- 46
- 1
- Homework Statement
- Calculate potential form poisson equation
- Relevant Equations
- ## \Delta \psi = -\frac { \rho _ 0}{\varepsilon _0 } ##
Hi.
I've the following charge density: ## \rho = \rho_0 \frac {r}{R} ##
I'm getting a trouble to calculate the potential inside a sphere of radius R located in the center of axis with the given charge density (using poisson equation):
the Laplacian in spherical coordinates is: ##\frac {1}{r^2} \frac {\partial}{\partial r} (r^2 \cdot \partial \frac {\psi}{\partial r}) = - \frac {\rho _ 0 r}{R \varepsilon _0 } ##
(the components theta and phi are canceled because of the symmetry of the problem.
so outside of the sphere it's pretty easy:
$$ \frac {1}{r^2} \frac {\partial}{\partial r} (r^2 \cdot \partial \frac {\psi}{\partial r}) = $$
is a solution of form $$ \psi = \frac {a}{r} + b $$
and ## b = 0 ## because the potential is infinity is zero. I can find out the ## a ## using ## a = kq = k \int dq dV ##
so that ## \psi = \frac {\pi k \rho _ R^3}{r} ## where ## r>R ## .
inside
So I'm getting little bit confused to know the solution form of the equation:
$$ \frac {1}{r^2} \frac {\partial}{\partial r} (r^2 \cdot \partial \frac {\psi}{\partial r}) = - \frac {\rho _ 0 r}{R \varepsilon _0 } $$
I tried to figure out that ## \psi ## must be proportional to ## r^3 ## with this way, and tried to use different Laplacian in some website that I found:
$$\frac {\partial ^ 2 \psi}{\partial r^2} + \frac {2}{r} \cdot \frac {\partial \psi}{\partial r} = - \rho _ 0 \frac {r}{R \varepsilon _ 0 } $$
using those I could substitute ## \psi '' = u' ## and ## \psi ' = u ## and to solve the equation using second order order differential equation using the example of this website at page 5 ( http://www.math.psu.edu/tseng/class/Math251/Notes-2nd%20order%20ODE%20pt1.pdf)
my equation form is: ## u' +\frac {2}{r} u =- \rho _ 0 \frac {r}{R \varepsilon _ 0 } ##
## u' +p(r) u = g(r) ##
so I've reached that the integrating factor is ## \mu (r) = e^{\int p(r)dt} = r^2 ##
and the answer for ## u ## contains an integral:
$$u(r)= \frac {\int \mu(r) \cdot g(r) dr}{\mu(r)}$$
and another integral to calculate the potential:
$$ \psi (r) = \int u(r) dr $$
what are my integration bounderies? are they in both of the cases 0 to R?
or just the second one? and why?
thank you.
I've the following charge density: ## \rho = \rho_0 \frac {r}{R} ##
I'm getting a trouble to calculate the potential inside a sphere of radius R located in the center of axis with the given charge density (using poisson equation):
the Laplacian in spherical coordinates is: ##\frac {1}{r^2} \frac {\partial}{\partial r} (r^2 \cdot \partial \frac {\psi}{\partial r}) = - \frac {\rho _ 0 r}{R \varepsilon _0 } ##
(the components theta and phi are canceled because of the symmetry of the problem.
so outside of the sphere it's pretty easy:
$$ \frac {1}{r^2} \frac {\partial}{\partial r} (r^2 \cdot \partial \frac {\psi}{\partial r}) = $$
is a solution of form $$ \psi = \frac {a}{r} + b $$
and ## b = 0 ## because the potential is infinity is zero. I can find out the ## a ## using ## a = kq = k \int dq dV ##
so that ## \psi = \frac {\pi k \rho _ R^3}{r} ## where ## r>R ## .
inside
So I'm getting little bit confused to know the solution form of the equation:
$$ \frac {1}{r^2} \frac {\partial}{\partial r} (r^2 \cdot \partial \frac {\psi}{\partial r}) = - \frac {\rho _ 0 r}{R \varepsilon _0 } $$
I tried to figure out that ## \psi ## must be proportional to ## r^3 ## with this way, and tried to use different Laplacian in some website that I found:
$$\frac {\partial ^ 2 \psi}{\partial r^2} + \frac {2}{r} \cdot \frac {\partial \psi}{\partial r} = - \rho _ 0 \frac {r}{R \varepsilon _ 0 } $$
using those I could substitute ## \psi '' = u' ## and ## \psi ' = u ## and to solve the equation using second order order differential equation using the example of this website at page 5 ( http://www.math.psu.edu/tseng/class/Math251/Notes-2nd%20order%20ODE%20pt1.pdf)
my equation form is: ## u' +\frac {2}{r} u =- \rho _ 0 \frac {r}{R \varepsilon _ 0 } ##
## u' +p(r) u = g(r) ##
so I've reached that the integrating factor is ## \mu (r) = e^{\int p(r)dt} = r^2 ##
and the answer for ## u ## contains an integral:
$$u(r)= \frac {\int \mu(r) \cdot g(r) dr}{\mu(r)}$$
and another integral to calculate the potential:
$$ \psi (r) = \int u(r) dr $$
what are my integration bounderies? are they in both of the cases 0 to R?
or just the second one? and why?
thank you.
Last edited: