- #1
Redwaves
- 134
- 7
- Homework Statement
- Calculate quality factor of a damped oscillation from a graph
- Relevant Equations
- ##x(t) = A_0 e^{\frac{-xt}{2}}cos(\omega_d t - \alpha)##
I'm trying to find the quality factor of a damped system.
I know 3 points from the graph, ##(t,x): (\frac{\pi}{120},0.5), (\frac{\pi}{80},0), (\frac{\pi}{16},0)##
From this I found that ##T = \frac{\pi}{20}##
##\omega_d = \frac{2\pi}{T} = 40 rad##
Then, from the solution ##x(t) = A_0 e^{\frac{-xt}{2}}cos(\omega_d t - \alpha)##
##cos(\omega_d t - \alpha)## must be 0 when x = 0
##\omega_d t - \alpha = \frac{\pi}{2}##
##\alpha = 0##
I also know that ##Q = \frac{\omega_0}{\gamma}##
and
##\omega_0^2 = \omega_d^2 + \frac{\gamma^2}{4}##
I need some help to find ##\gamma##
I know 3 points from the graph, ##(t,x): (\frac{\pi}{120},0.5), (\frac{\pi}{80},0), (\frac{\pi}{16},0)##
From this I found that ##T = \frac{\pi}{20}##
##\omega_d = \frac{2\pi}{T} = 40 rad##
Then, from the solution ##x(t) = A_0 e^{\frac{-xt}{2}}cos(\omega_d t - \alpha)##
##cos(\omega_d t - \alpha)## must be 0 when x = 0
##\omega_d t - \alpha = \frac{\pi}{2}##
##\alpha = 0##
I also know that ##Q = \frac{\omega_0}{\gamma}##
and
##\omega_0^2 = \omega_d^2 + \frac{\gamma^2}{4}##
I need some help to find ##\gamma##