- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hey! (Nerd)
Given the relation: $R=\{ \langle\{ \{ \varnothing \} \}, \varnothing \rangle, \langle \varnothing, \{ \varnothing \}\rangle, \langle \{ \varnothing \},\{ \{ \varnothing \} \}\rangle \}$, I want to calculate $R^{-1}[\{ \varnothing \}], R \circ R, \mathcal{P}R$.
That's what I have tried:
$$R^{-1}[\{ \varnothing \}]=\{ x: \exists y \in \{ \varnothing\}:xRy \}=\{x: xR \varnothing\}=\{ \{ \{ \varnothing \} \}\}$$
$$R \circ R=\{ \langle \{ \varnothing \},\varnothing\rangle, \langle \{ \{ \varnothing \} \},\{ \varnothing\} \rangle, \langle \varnothing, \{ \{ \varnothing\} \}\rangle \}$$
$\mathcal{P}R$ will have $2^3=8$ elements, right? Will $\mathcal{P}R$ contain the elements $\{\{ \{ \varnothing \} \}\}, \{ \varnothing \},\{ \{ \varnothing \}\}$?
Given the relation: $R=\{ \langle\{ \{ \varnothing \} \}, \varnothing \rangle, \langle \varnothing, \{ \varnothing \}\rangle, \langle \{ \varnothing \},\{ \{ \varnothing \} \}\rangle \}$, I want to calculate $R^{-1}[\{ \varnothing \}], R \circ R, \mathcal{P}R$.
That's what I have tried:
$$R^{-1}[\{ \varnothing \}]=\{ x: \exists y \in \{ \varnothing\}:xRy \}=\{x: xR \varnothing\}=\{ \{ \{ \varnothing \} \}\}$$
$$R \circ R=\{ \langle \{ \varnothing \},\varnothing\rangle, \langle \{ \{ \varnothing \} \},\{ \varnothing\} \rangle, \langle \varnothing, \{ \{ \varnothing\} \}\rangle \}$$
$\mathcal{P}R$ will have $2^3=8$ elements, right? Will $\mathcal{P}R$ contain the elements $\{\{ \{ \varnothing \} \}\}, \{ \varnothing \},\{ \{ \varnothing \}\}$?