Calculate Square of Sum ∑1..9999

  • MHB
  • Thread starter Albert1
  • Start date
  • Tags
    Square Sum
In summary, the sum of the squares of the integers from 1 to 9999 is 99999, the sum of the squares of the integers from 100 to 9999 is 99999+100, and the sum of the squares of the integers from 100 to 999 is 99999+100+999.
  • #1
Albert1
1,221
0
\(\displaystyle \left(\sum_{n=1}^{9999}\frac{\sqrt{100+\sqrt{n}}}{\sqrt{100-\sqrt{n}}}+\sum_{n=1}^{9999}\frac{\sqrt{100-\sqrt{n}}}{\sqrt{100+\sqrt{n}}}\right)^2\)
 
Last edited:
Mathematics news on Phys.org
  • #2
Albert said:
$(\sum_{n=1}^{9999}\dfrac{\sqrt{100+\sqrt n}}{\sqrt{100-\sqrt n}}
+\sum_{n=1}^{9999}\dfrac{\sqrt{100-\sqrt n}}{\sqrt{100+\sqrt n}})^2$

I would try to simplify these sums by multiplying the top and bottom of each by the bottom's conjugate.
 
  • #3
Albert said:
$(\sum_{n=1}^{9999}\dfrac{\sqrt{100+\sqrt n}}{\sqrt{100-\sqrt n}}
+\sum_{n=1}^{9999}\dfrac{\sqrt{100-\sqrt n}}{\sqrt{100+\sqrt n}})^2$
sorry it should be:

\(\displaystyle \left(\frac{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}
+\frac{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}\right)^2\)
 
  • #4
Albert said:
\(\displaystyle \left(\frac{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}
+\frac{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}\right)^2\)
8
[sp]Generalisation. This is a particular case ($N=100$) of this problem:

Find \(\displaystyle \biggl(f(N) + \frac1{f(N)}\biggr)^{\!2}\), where \(\displaystyle f(N) = \frac{\sum\limits_{n=1}^{N^2-1}\sqrt{N+\sqrt n}}{\sum\limits_{n=1}^{N^2-1}\sqrt{N-\sqrt n}}.\)

Experimentation. To see which way the wind is blowing, I got out my trusty pocket calculator and found a numerical expression for $f(2)$: $$f(2) = \frac{\sqrt{2 + \sqrt1} + \sqrt{2 + \sqrt2} + \sqrt{2 + \sqrt3}} {\sqrt{2 - \sqrt1} + \sqrt{2 - \sqrt2} + \sqrt{2 - \sqrt3}} \approx \frac{1.732 + 1.848 + 1.932}{1.000 + 0.765 + 0.518} = \frac{5.512}{2.283} \approx 2.414.$$ I recognised that answer as being suspiciously close to $1+\sqrt2$, but I could not see either how to prove that or how to generalise it for higher values of $N$. So I did the same calculation for $N=3$, and found to my surprise that answer again looked like $1+\sqrt2$. This made me wonder what the denominator of the fraction for $f(2)$ would look like if I multiplied it by $\sqrt2$, and that led to the following table: $$ \begin{array}{r|cccl} \text{row 1} & 1.732 & 1.848 & 1.932 & \text{(numerator)} \\ \text{row 2} & 1.000 & 0.765 & 0.518 & \text{(denominator)} \\ \text{row 3} & 1.414 & 1.082 & 0.732 & \text{(row 2 times $\sqrt2$)} \\ \text{row 4} & 0.732 & 1.082 & 1.414 & \text{(row 3 reversed)} \\ \text{row 5} & 1.732 & 1.848 & 1.932 & \text{(row 2 plus row 4)} \end{array}$$ Row 5 is the same as row 1! That gave me the idea for proving that $f(N) = 1 + \sqrt2$ for all $N$.

Solution. For $1\leqslant n< N$, $$\begin{aligned} 2\bigl(N - \sqrt{N^2-n}\bigr) &= 2N - 2\sqrt{N^2-n} \\ &= (N + \sqrt n) - 2 \sqrt{(N+\sqrt n)(N - \sqrt n)} + (N - \sqrt n) \\ &= \bigl(\sqrt{N + \sqrt n} - \sqrt{N - \sqrt n}\bigr)^2. \end{aligned}$$ Take the positive square root of both sides, to get $\sqrt2\sqrt{N - \sqrt{N^2-n}} = \sqrt{N + \sqrt n} - \sqrt{N - \sqrt n}$ and therefore $\sqrt{N - \sqrt n} + \sqrt2\sqrt{N - \sqrt{N^2-n}} = \sqrt{N + \sqrt n}.$ Sum that from $n=1$ to $N^2-1$: $$ \sum_{n=1}^{N^2-1}\sqrt{N - \sqrt n}\: + \sum_{n=1}^{N^2-1}\sqrt2\sqrt{N - \sqrt{N^2-n}} = \sum_{n=1}^{N^2-1}\sqrt{N + \sqrt n}.$$ Now reverse the order of summation for the second sum on the left side, by replacing $n$ by $N^2-n$: $$ \sum_{n=1}^{N^2-1}\sqrt{N - \sqrt n}\: + \sum_{n=1}^{N^2-1}\sqrt2\sqrt{N - \sqrt n} = \sum_{n=1}^{N^2-1}\sqrt{N + \sqrt n}.$$ The left side is then \(\displaystyle \bigl(1+\sqrt2\bigr)\sqrt{N - \sqrt n}\), from which it follows that $f(N) = 1+\sqrt2.$

Conclusion. \(\displaystyle \biggl(f(N) + \frac1{f(N)}\biggr)^{\!2} = \bigl((1+\sqrt2) + (1+\sqrt2)^{-1}\bigr)^2 =\bigl((1+\sqrt2) + (\sqrt2 - 1)\bigr)^2 = \bigl(2\sqrt2\bigr)^2 = 8.\)[/sp]
 
  • #5
Opalg's has given one so detail solution and my hat is off to him!

My solution that is essentially quite the same as Opalg's method:

If we let

$a=\sqrt{100+\sqrt n}-\sqrt{100-\sqrt n}$

Then squaring, rearranging and taking square root of it we have

$a^2=100+\sqrt n+100-\sqrt n-2(\sqrt{100+\sqrt n})(\sqrt{100-\sqrt n})$

$a^2=200--2\sqrt{100^2-n})$

$a^2=2(100-\sqrt{100^2-n})$

$a=\sqrt{2}\sqrt{(100-\sqrt{100^2-n})}$

$\therefore \sqrt{2}\sqrt{(100-\sqrt{100^2-n})}=\sqrt{100+\sqrt n}-\sqrt{100-\sqrt n}$

Notice that

$\begin{align*}\displaystyle \sum\limits_{n=1}^{9999}\sqrt{2}\sqrt{(100-\sqrt{100^2-n})}&=\sqrt{2}\sum\limits_{n=1}^{9999}\sqrt{(100-\sqrt{100^2-n})}\\&=\sqrt{2}\left(\sqrt{100-\sqrt{9999}}+\sqrt{100-\sqrt{9998}}+\cdots +\sqrt{100-\sqrt{2}}+\sqrt{100-\sqrt{1}}\right)\\&=\sqrt{2}\left(\sqrt{100-\sqrt{1}}+\sqrt{100-\sqrt{2}}+\cdots +\sqrt{100-\sqrt{9998}}+\sqrt{100-\sqrt{9999}}\right)\\&=\sqrt{2}\sum\limits_{n=1}^{9999}\sqrt{(100-\sqrt{n})}\end{align*}$

So we have
$\displaystyle \sum\limits_{n=1}^{9999} \sqrt{2}\sqrt{(100-\sqrt{100^2-n})}= \sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}- \sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}$

$\displaystyle\sqrt{2}\sum\limits_{n=1}^{9999}\sqrt{(100-\sqrt{n})}=\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}- \sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}$

$\displaystyle\sum\limits_{n=1}^{9999}\sqrt{(100-\sqrt{n})}(\sqrt{2}+1)=\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}$

Replacing this into the first fraction inside the square of the expression gives

$\begin{align*}\displaystyle \frac{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}&=\frac{\sum\limits_{n=1}^{9999}\sqrt{(100-\sqrt{n})}(\sqrt{2}+1)}{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}\\&=\sqrt{2}+1\end{align*}$

Hence,

$\begin{align*}\displaystyle \frac{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}&=\dfrac{1}{\sqrt{2}+1}\\&=\sqrt{2}-1 \end{align*}$

Last, we see that

$\displaystyle \left(\frac{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}
+\frac{\sum\limits_{n=1}^{9999}\sqrt{100-\sqrt n}}{\sum\limits_{n=1}^{9999}\sqrt{100+\sqrt n}}\right)^2=(\sqrt{2}+1+\sqrt{2}-1)^2=8$
 

FAQ: Calculate Square of Sum ∑1..9999

What is the formula for calculating the square of the sum of numbers from 1 to 9999?

The formula for calculating the square of the sum of numbers from 1 to 9999 is (N(N+1)/2)^2, where N is the highest number in the sequence (in this case, 9999). This formula is derived from the mathematical concept of arithmetic series.

What is the purpose of calculating the square of the sum of numbers from 1 to 9999?

The purpose of calculating the square of the sum of numbers from 1 to 9999 is to find the total sum of all the numbers in the sequence and then square it. This can be useful in various mathematical or scientific calculations, such as finding the average of a large set of numbers or determining the area under a curved line.

Is there a simpler way to calculate the square of the sum of numbers from 1 to 9999?

Yes, there is a simpler way to calculate the square of the sum of numbers from 1 to 9999. You can use the formula n(n+1)(2n+1)/6, where n is the highest number in the sequence (in this case, 9999). This is known as the sum of squares formula and is another common method for finding the square of a sum of numbers.

Can the square of the sum of numbers from 1 to 9999 be calculated without a formula?

No, the square of the sum of numbers from 1 to 9999 cannot be accurately calculated without using a formula. However, you can use a calculator or a computer program to quickly and accurately calculate the square of the sum of numbers from 1 to 9999.

How can the square of the sum of numbers from 1 to 9999 be applied in real-world situations?

The square of the sum of numbers from 1 to 9999 can be applied in various real-world situations, such as calculating the total cost of a large number of items or finding the total energy output of a system. It can also be used in statistical analysis, finance, and other scientific fields.

Similar threads

Replies
41
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
3
Views
2K
Replies
1
Views
878
Replies
15
Views
1K
Replies
7
Views
2K
Back
Top