Calculate the area of this pond with functions given for the perimeter

AI Thread Summary
To calculate the area of the pond, the integral of the upper function f(x) from -5 to 5 must be adjusted by subtracting the integral of the lower function g(x). This subtraction accounts for the areas below the pond that are above the x-axis, ensuring only the area between the two curves is considered. The area can be visualized as vertical strips where the height at each x is determined by the difference f(x) - g(x). Thus, the correct expression for the area is the definite integral of (f(x) - g(x)) over the specified interval. Understanding this subtraction is key to accurately finding the pond's area.
tomwilliam
Messages
141
Reaction score
2
Homework Statement
See image below. Trying to calculate area of a pond using the functions given for the upper and lower boundaries
Relevant Equations
The equation referred to in the booklet is the definite integral from a to b of f(x) wrt dx = F(b) - F(a)
202f69e6-44cd-42d3-9cd8-9991e47506e5.JPG


So the solution is obviously given here, I'm just trying to understand it. I thought that integrating f(x) from -5 to 5 would give the area under the curve (including the areas below the "pond" at the edges of the image but above y=0. I don't really understand why we are subtracting the integral of g(x).
Any help much appreciated!
Thanks
 
Physics news on Phys.org
tomwilliam said:
Homework Statement: See image below. Trying to calculate area of a pond using the functions given for the upper and lower boundaries
Relevant Equations: The equation referred to in the booklet is the definite integral from a to b of f(x) wrt dx = F(b) - F(a)

View attachment 346662

So the solution is obviously given here, I'm just trying to understand it. I thought that integrating f(x) from -5 to 5 would give the area under the curve (including the areas below the "pond" at the edges of the image but above y=0. I don't really understand why we are subtracting the integral of g(x).
Any help much appreciated!
Thanks
To get the blue area, you need to subtract from the ##\int_{-5}^5 f(x) dx## the areas ##a## and ##b## and to add to it the area ##c##:
1717884625562.png

This is what subtracting ##\int_{-5}^5 g(x) dx## does.
 
Another way to understand the same result is to imagine the area of the pond as a bunch of [blue-shaded] vertical strips, all side by side.

The ##y## extent of the strip at ##x## is given by ##f(x) - g(x)##. The total area of all the strips is then obviously ##\int_{-5}^{5} ( f(x) - g(x) )\ dx##.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top