- #1
bugatti79
- 794
- 1
Calculate the following contour integrals using suitable parameterisations
1)##\oint \frac{1}{z-z_0} dz## where C is the circle ##z_0## and radius r>0 oriented CCW and ##k\ge0##
2) ##\int_c |z|^2 dz## where C is the straight line from 1+i to -1
3. Relevant equations
##\oint f(z)dz=\int_a^b f(z(t))*z'(t)dt##
1) let z(t)=e^it for ##0\le t \le1## and ##z_0=0## since it is centred at ##(0,0)##
We have ##\displaystyle \int_c \frac{1}{z^k} dz=\int_0^{2\pi} \frac{1}{e^{ikt}} i e^{it} dt=\frac{i}{(1-k)}e^{it}|_0^{2\pi}##..?
2) ##\int_c |z|^2 dz## where C is the straight line from 1+i to -1
let ##z(t)=(1-t)(1+i)+t(0)=1-t+i(1-t)## for ##0 \le t \le 1##
##z'(t)=-1-i##
##|z(t)|^2=\sqrt((1-t)^2+(1-t)^2)=2t^2-4t+2##
Therefore ##\int_c |z|^2 dz=\int_0^1 (2t^2-4t+2)(-1-i)dt##...?
How am I doing so far on both?
Thanks
Homework Statement
1)##\oint \frac{1}{z-z_0} dz## where C is the circle ##z_0## and radius r>0 oriented CCW and ##k\ge0##
2) ##\int_c |z|^2 dz## where C is the straight line from 1+i to -1
3. Relevant equations
##\oint f(z)dz=\int_a^b f(z(t))*z'(t)dt##
The Attempt at a Solution
1) let z(t)=e^it for ##0\le t \le1## and ##z_0=0## since it is centred at ##(0,0)##
We have ##\displaystyle \int_c \frac{1}{z^k} dz=\int_0^{2\pi} \frac{1}{e^{ikt}} i e^{it} dt=\frac{i}{(1-k)}e^{it}|_0^{2\pi}##..?
2) ##\int_c |z|^2 dz## where C is the straight line from 1+i to -1
let ##z(t)=(1-t)(1+i)+t(0)=1-t+i(1-t)## for ##0 \le t \le 1##
##z'(t)=-1-i##
##|z(t)|^2=\sqrt((1-t)^2+(1-t)^2)=2t^2-4t+2##
Therefore ##\int_c |z|^2 dz=\int_0^1 (2t^2-4t+2)(-1-i)dt##...?
How am I doing so far on both?
Thanks
Last edited: