MHB Calculate the integral using the Fourier coefficients

AI Thread Summary
The discussion focuses on calculating the integral of the square of a periodic signal using its Fourier coefficients. The user confirms the relationship between the integral of the squared signal and the sum of the squares of its Fourier coefficients, questioning their calculation due to an unexpected result. Another participant suggests a correction in the summation limits of the Fourier coefficients and reinforces that the integral of the squared signal can be equated to the integral of the squared magnitude of the signal. The conversation highlights the importance of correctly applying Fourier series properties in signal analysis. The final conclusion emphasizes the relationship between the Fourier coefficients and the integral of the signal's square.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

A real periodic signal with period $T_0=2$ has the Fourier coefficients $$X_k=\left [2/3, \ 1/3e^{j\pi/4}, \ 1/3e^{-i\pi/3}, \ 1/4e^{j\pi/12}, \ e^{-j\pi/8}\right ]$$ for $k=0,1,2,3,4$.
I want to calculate $\int_0^{T_0}x^2(t)\, dt$.

I have done the following:

It holds that $$\frac{1}{T_0}\int_{T_0}|x(t)|^2\, dt=\sum_{k=-\infty}^{+\infty}|X_k|^2$$ right? (Wondering)

Then do we get $$\int_{T_0}|x(t)|^2\, dt=2\sum_{k=-\infty}^{+\infty}|X_k|^2=2\left [\left(\frac{2}{3}\right )^2+\left(\frac{1}{3}\right )^2+\left(\frac{1}{3}\right )^2+\left(\frac{1}{4}\right )^2+1\right ]$$ But the result that I get is not one of the choices. So have I done something wrong? (Wondering)
 
Mathematics news on Phys.org
Hey mathmari!

Shouldn't it be:
$$\frac{1}{T_0}\int_{T_0}|x(t)|^2\, dt
=\sum_{k=-N}^{+N}|X_k|^2 \\
\int_{T_0}|x(t)|^2\, dt
=T_0\sum_{k=-N}^{+N}|X_k|^2
=2\left\{\left(\frac{2}{3}\right )^2 + 2\left [\left(\frac{1}{3}\right )^2+\left(\frac{1}{3}\right )^2+\left(\frac{1}{4}\right )^2+1\right ]\right\}$$
(Wondering)

Oh, and since it's given that $x(t)$ is a real signal, we can write $\int_{T_0}|x(t)|^2\, dt = \int_{T_0}x(t)^2\, dt$, can't we? (Wondering)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top